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Gottlob Frege’s Grundgesetze der Arithmetik (Basic Laws of Arithmetic,
1893/1903) is a foundational work in Mathematical Logic. Unfortunately, Bertrand
Russell proved that it is inconsistent. Most readers blame the inconsistency on a
particular axiom: Basic Law V. However, I will show that we can make a syntac-
tic restriction on the system and keep Basic Law V while developing arithmetic
in a consistent way. This will require adding additional axioms asserting the
existence of various functions. This approach has historical and philosophical
advantages and furthermore has mathematical interest. Historically, one can
work through the Grundgesetze in a consistent way, using Frege’s own defini-
tions and proofs. Philosophically, one can define numbers in such a way that one
captures the plausible thesis that a statement of number contains an assertion
about a property. Finally, any natural set-theoretic model of this system will be
radically non-well-founded, including sets that contain themselves. This results
in a system quite different (mathematically speaking) than standard contempo-
rary systems of mathematical logic and arithmetic.
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1 Introduction

The goal of this project is to develop a consistent version of Gottlob Frege’s
Grundgesetze der Arithmetik (1893/1903) while maintaining his Basic Law V.
This axiom is generally blamed for the contradiction in the Grundgesetze re-
sulting from a version of Russell’s Paradox, but the axiom only leads to a con-
tradiction in conjunction with other aspects of the formal system.

I will show that we can give up other aspects of the formal system while
maintaining Basic Law V in a way that still allows us to construct the natural
numbers and prove the Dedekind-Peano axioms of arithmetic. The guiding
idea is to put a syntactic restriction on which sequences of symbols count as
well-formed formulas within the formal system. The cost will be the need to
add axioms governing the existence of functions, i.e. axioms stating what is
effectively a form of restricted comprehension.

However, if we change the syntax, then in what sense are we really keeping
Basic Law V?1 Basic Law V is the following: two functions have the same value-
range if and only if they have the same outputs on the same inputs. It follows
that every function has a value-range. This leads to a contradiction in Frege’s
system via Russell’s Paradox.

So, I take the core idea to be that every function has a value-range. As
a corollary in Frege’s system, every property has an extension. These are the
principles that we can maintain. The trouble with the Grundgesetze, then,
is that not every predicate denotes a function, on pain of contradiction. The
language is in this sense is “too rich”. By restricting the syntax, we can avoid
this unfortunate situation. Our additional axioms will then allow definitions of
functions via predicates, albeit with certain constraints.

As further motivation, consider the following approach to developing a sim-
ple second-order logic from a classical first-order logic: one might think one
could simply allow well-formed formulas to contain predicate symbols and pred-
icate variables in term position, and introduce a new quantifier governing the
predicate variables. This would allow one to form sentences such as P (P ),
which will be interpreted by a model as: “property P has property P”. Indeed,
properties such as “being a property” are intuitively properties of themselves.

One might then think one could introduce a predicate symbol in the following
way: P (X) := ¬X(X). Intuitively, P (X) refers to the property: “is not a
property of itself”. Now assume P (P ). It follows that ¬P (P ) by definition, a
contradiction. Therefore ¬P (P ). But this implies P (P ), again a contradiction.
But then our second-order logic is inconsistent. This is effectively Russell’s
paradox applied to properties.

The reason this isn’t a problem for our second-order logic is that in any stan-
dard syntax one can’t simply introduce a predicate symbol using the metalan-
guage in this way (which formula in the object language does P (P ) correspond
to?). Instead, one would define the predicate symbol P via a sentence of the
object language, namely: ∀X(P (X)↔ ¬X(X)).

1I am grateful to Richard Heck and Haim Gaifman for raising this question.
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From this sentence one can derive a contradiction. But this doesn’t show
that our second-order logic is inconsistent, for the contradiction only results
from this sentence treated as an assumption. Instead, we can conclude that for
any predicate symbol P , the corresponding sentence is a logical falsehood.

The point is: the syntax of our second-order logic is restricted in a way that
prevents the construction of such paradoxical predicates.

Frege’s formal system does not allow sentences of the form P (P (x)). First-
order functions (“first-level functions”) take objects as input, second-order func-
tions take first-order functions as input, etc.2 However, given Frege’s use of
value-ranges of functions, although one cannot ascribe a property to itself, one
can ascribe a property to its own extension, and as a result the self-referential
behavior that leads to versions of Russell’s paradox resurfaces in Frege’s sys-
tem.3

Note also that Frege’s formal system is effectively a system in which, for
example, arbitrary well-formed formulas with one free object variable can be
inserted into first-order function variable position. So, where D is a second-
order predicate symbol, the following will be a well-formed formula (translated
into a modern notation): D(P (x) → Q(x)).4 In this case, P (x) → Q(x) refers
to a function from objects to truth-values, and it is that function that will be
mapped by the referent of D(ϕ(x)) to the truth-value of the complete well-
formed formula.

I claim that if we give this syntactic assumption up, we can salvage much of
Frege’s formal system. In particular, we can insist that only predicate symbols,
function symbols, terms, and variables can be inserted into variable position in
a predicate or functional expression. Once we make this syntactic restriction,
in order to capture the content of our example sentence one would first need to
assume a definition statement ∀x(S(x) ↔ (P (x) → Q(x))), where S is a (pre-
sumably unused) predicate symbol in the language. One can then capture the
desired content using the sentence D(S(x)). But now our definition statement
has been treated as an assumption, and hence any contradiction we derive is
a contradiction relative to that assumption. We are effectively assuming that
there in fact exists a function that we will refer to with the expression S(x) that
behaves in the way we have attempted to define, mapping an object to the True
if either the function referred to by P (x) maps it to the False or the function
referred to by Q(x) maps it to the True.

2I should note that in Frege’s system, a (first-order) predicate symbol would refer to a
function from objects to truth-values.

3Note that an extension is Frege’s analogue of a set of objects and a value-range is Frege’s
analogue of a set of ordered pairs. This analogy isn’t perfect because for Frege e.g. binary
relations have extensions as well. An extension is the value-range of a function whose range
includes at most the two truth-values (compare a characteristic function), and it includes
every entity that function maps to the truth-value True and no others.

4Strictly speaking, Frege has no need for distinguishing predicate symbols from function
symbols in general, and he does not do so in his object language. However, when describing
the formal system in his metalanguage (i.e. German with a bit of mathematical symbolism),
Frege uses symbols that are obviously meant to correspond to functions from objects to truth-
values.

4



I will show that this syntactic restriction is enough to ensure the relative
consistency of our modification of the Grundgesetze while maintaining Basic
Law V. In particular, I will show that this restriction, even with the addition of
axioms governing arithmetic, has a (non-well-founded) model.

Our additional axioms effectively govern the uses of comprehension Frege
actually needs in order to construct arithmetic using his definitions and proofs.

What is the value of this approach?
One primary value is historical. Using my method, one can effectively read

through the Grundgesetze in a consistent way, using Frege’s own definitions and
carrying out Frege’s own proofs.

Another value is philosophical. One can adopt this restriction while still
using Frege’s definition of natural number. The guiding idea behind Frege’s
definition is that each natural number n > 0 is the number such that for there
to be n P s is for there to exist distinct x1, ...xn that all have property P such
that for any y, if y has property P then y is equal to xi for some 1 ≤ i ≤ n.5

This is philosophically valuable because it captures the philosophical thesis
that a statement of number contains an assertion about a property.6 Hence,
we can explicitly axiomatize the fundamental relation between numbers and
properties.

Are there mathematical advantages to this approach? It is the opinion of
this author that this remains to be seen. This approach is certainly an alter-
native to standard contemporary conceptions of higher-order logic and formal
theories of arithmetic, but any alternative to standard approaches must prove
its mathematical value via fruitful results. Furthermore, it may turn out that
natural extensions of this theory are equivalent to theories already known.

It is, however, mathematically interesting that any natural interpretation of
Frege’s system will be non-well-founded, allowing e.g. extensions that contain
themselves.7 This is thus a non-standard approach to logic and mathematics
more generally.

Do these results vindicate Logicism with respect to arithmetic? This would
depend upon whether value-ranges are logical objects and whether our axioms
can be justified as a matter of pure logic. I remain unconvinced.

2 A Note on Syntax and Semantics

I will be modifying the Grundgesetze via more contemporary approaches to
syntax and semantics, leading to a formal system more appropriate for contem-
porary logic and mathematics. These modifications will not effect one’s ability

5For there to be 0 P s is for there to not exist an x such that x has property P .
6Frege defended the similar thesis that a statement of number contains an assertion about

a concept in (Frege 1884), but this was prior to his sense/reference distinction and hence
it is unclear whether he would have endorsed the thesis as I have just stated it. After his
sense/reference distinction, Frege did use the expression ‘concept’ (‘Begriff’) to refer to the
referent of a predicate, so it is natural to assume that he would have endorsed a similar thesis.

7A simple example is the property “being a value-range.” The extension of this property,
itself a value-range by definition, contains itself.
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to actually read through Frege’s development of arithmetic in the Grundgesetze
in a consistent way, since the reader could reverse them if desired.

For example, I will not be using Frege’s own two-dimensional syntax, but
will rather translate Frege’s syntax into a modern notation. For readers familiar
with Frege’s syntax, reversing the translation should be a simple exercise. As a
result, I must make a few points about the differences between our syntax and
Frege’s syntax.

Much of Frege’s notation can be easily translated into standard contempo-
rary notation, with a few exceptions. Frege introduces a function symbol he
calls the horizontal, which refers to a function from the True to the True and
anything else to the False. Hence it effectively refers to the property “being the
True”. When combined with an arbitrary function-symbol, this has the effect of
creating a predicate expression or a relation expression, referring to a function
mapping its arguments to truth-values.

Frege also has a judgment stroke, meant to inform the reader that the ex-
pression following the judgment stroke has been judged to be true. Note also
that in Frege’s system, only expressions referring to truth-values can be judged.
Frege enforces this by insisting that every well-formed formula begins with the
horizontal.

Irrespective of Frege’s philosophical motivation, for our mathematical pur-
poses both the horizontal and the judgment stroke are unnecessary. We will
distinguish predicate symbols and relation symbols from other function sym-
bols, and well-formed formulas will always have a truth-value relative to an
interpretation and an assignment. When carrying out a derivation within the
formal system, it should be clear from the context which formulas are being
asserted as true and which formulas are being treated as assumptions. Within
the formal system itself, we have no need to allow for the case of a formula
merely being considered rather than assumed or asserted.

Note that strictly speaking, Frege’s formal language does not satisfy unique
readability: there are well-formed formulas within the language that could be
constructed in distinct ways. For example, the formula ‘ f(a)’ can be read
as the application of the horizontal to the result of applying the function-name
‘f(ξ)’ to the object-name ‘a’, but it can also be read as the application of the
horizontal to the result of applying the two-place function-name ‘φ(ξ)’ to the
function-name ‘f(ξ)’ and the object-name ‘a’, where this two-place function-
name refers to the result of applying the referent of its first argument to the
referent of its second argument. (Frege 1893, pg. 39)

I will follow the contemporary practice of constructing a formal language
that satisfies unique readability.

As stated in the Introduction, our fundamental syntactic departure from
Frege will be that we will insist that higher-order function and relation symbols
can only be applied to function and relation symbols rather than arbitrary ex-
pressions containing the appropriate number (and type) of free variables. Hence,
D(S(x)) will be a well-formed formula while D(P (x) → Q(x)) will not.8 This

8For simplicity, I will consider predicate symbols and properties to be relation symbols and
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implies that when using the formal system, one must be careful when introduc-
ing abbreviations.

Given this syntactic restriction, Frege’s axioms for identity, which quantify
over arbitrary functions, ought to be replaced with axioms involving substitu-
tion, as is the contemporary custom. However, I will not be using all of Frege’s
own axioms in the derivation system below, preferring to extend a standard
contemporary derivation system with Frege’s axioms that go beyond it.9

Frege’s syntax also goes beyond standard contemporary syntax by including
names of value-ranges and a definite article (the analogue of ‘the’ in English). I
will use corner-quotes to construct names of value-ranges: e.g. pv1, v2q(fi

1,2(v1, v2))
refers to the value-range of a first-order function of two variables. it will turn
out that only value-ranges of first-order functions and predicates are needed
for our purposes. Following Frege, I will also let the symbol ı correspond to a
definite article.

Frege’s formal language is fully interpreted : every expression within the
language has a fixed interpretation. Effectively, there is a single domain of
objects and functions which includes every referent of a function-name or object-
name within the fully interpreted language. Names of value-ranges are object-
names formed from function-names.

I have chosen to follow the contemporary practice of allowing the interpre-
tation of non-logical symbols to vary via a model-theoretic semantics. Every
model will include a domain of objects and a domain of functions (and rela-
tions), where every function (and relation) is assigned a value-range within the
domain of objects by the model.

Frege’s domain contains two special objects: the True and the False. As we
will see, introducing names for these objects (T and F ) will give us a useful way
of treating properties and relations as functions.

Because of our fundamental syntactic restriction, I will not follow Frege in
treating the quantifiers as referring to functions from functions to truth-values,
but will instead give them a standard contemporary interpretation. Further-
more, I will not require the interpretation function of a model to assign every
well-formed formula a referent (i.e. its truth-value), instead sticking with a
standard contemporary definition of truth in a model.

I
I will close the domain of functions and relations under arity reduction (e.g.

the existence of a function f(c, y) of arity 1 whenever f(x, y) exists). Moving
forward, I will always use e.g. f(c, y) to denote the reduction of the referent
of f(x, y) via the referent of constant c at the first argument place. This will
greatly simplify our semantics, allowing for a simple treatment of quantification
into a value-range expression.

Note that given the motivation behind our fundamental syntactic restric-
tion, we must insist that only function symbols are interpreted by the model as

relations of arity 1, respectively.
9If one feels that my axioms for identity require a non-trivial change to the Grundgesetze,

one is welcome to treat my new identity axioms as part of our extension of the Grundgesetze
rather than the Grundgesetze itself.
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referring to functions within the domain. For example, g(x) will be interpreted
as a name of a function while P (x)→ Q(x) will not. The latter is instead simply
a well-formed formula with one free variable.

I will assume that the range of every function is a subset of the domain of ob-
jects. This will greatly simplify the syntax and has no effect on our development
of arithmetic.10

Frege introduces many symbols via definitions in the course of his devel-
opment of his formal theory of arithmetic. Given our fundamental syntactic
restriction, we must ground these definitions in additional axioms governing the
existence of functions.

3 Introduction to the Formal System

3.1 Syntax and Semantics

I will now introduce the formal system in more detail. See the Appendix for a
rigorous description.

A language L will include the following symbols: (, ), ,, ¬, ∧, ∨, →, ↔, ∀,
∃, =, p, q, ı, T , F . Strictly speaking, T and F will not be considered logical
symbols, since their interpretations will be allowed to vary.

Once again, corner-quotes p and q are used to construct names of value-
ranges and ı is a definite article, referring to the unique object contained in an
extension if it exists and the extension (or other object) itself otherwise.

Languages always include countably many object variables vi and may in-
clude function variables fi

n,m or relation variables Vi
n,m, where n denotes the

order and m denotes the arity. The reason that not all orders and arities need to
be included is that I want to allow for cases in which the domain doesn’t contain
any functions of a particular order and arity. Note that whenever a function
or relation variable is included, there must be countably many variables of that
order and arity included in the language as well.

Naturally, a language may also include constants ci, function symbols gi
n,m,

and relation symbols Ri
n,m. As in the case of variables, if the language contains

a function symbol or relation symbol, then it must also contain countably many
function or relation variables of that order and arity.

Given our semantics, relation symbols may also be thought of as function
symbols, but their range must include no more than the two truth-values True
and False.

Terms are defined in the natural way (see the Appendix), with two necessary
restrictions:

(R1) Function variables and function symbols of order n > 1 can only contain
a sequence of terms of order n − 1 of the appropriate arity within their
scope. Function variables and function symbols of order 1 can contain

10Frege allowed functions whose range includes functions, but this is unnecessary for our
purposes.
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a sequence of terms of any orders of the appropriate arity within their
scope.

(R2) A value-range term can only contain a function variable, function symbol,
relation variable, or relation symbol within its scope. pv1, ..., vkq(Vi

1,m(t1, ..., tm))
is an example.

The reason that in restriction (R1) we allow function variables and symbols
of order 1 to contain terms of any orders within their scope is that we want
to allow for the case in which the function maps the objects denoted by the
terms to a particular output once an appropriate assignment has been given to
the variables. Recall that all functions have only objects within their range.
Restriction (R2) ensures that our fundamental syntactic restriction applies to
value-range terms.

Well-formed formulas are also defined in the natural way (see the Appendix),
with the following two restrictions:

(R3) Relation variables and relation symbols of order n > 1 can only contain
a sequence of terms or formulas of order n − 1 of the appropriate arity
within their scope. Relation variables and relation symbols of order 1 may
contain a sequence of terms or formulas of any orders of the appropriate
arity within their scope.

(R4) Relation variables and symbols may only include terms and atomic for-
mulas of the appropriate order within their scope.

As with function variables and symbols above, relation variables and symbols
of order 1 can be applied to terms and formulas of any orders. This ensures
that one can speak of relations holding between objects determined by a term
once an appropriate assignment has been given to the variables.

The point of restriction (R4) is to ensure that our fundamental syntactic
restriction holds: higher-order relation variables and symbols can only be ap-
plied to terms and relation variables and symbols. They cannot be applied to
arbitrary well-formed formulas. For atomic formulas ϕi, Ri

n,m(ϕ1, ..., ϕm) is a
well-formed formula while Ri

n,m((ϕ1 ∨ ϕk), ..., ϕm) is not.
Turning now to semantics, a model M is an ordered tuple consisting of a

domain of objects O, a domain of functions G, an interpretation function A,
and a value-range function ◦. Each element of G will have a type fixing order
and arity.11 O must contain two distinct objects TM and FM.12

The value-range function ◦ will have the domain of functions G as its domain,
mapping every element g of G to an element o of O, where o is the value-range
of g.13 Of course, o will be constrained by the order and arity of the function g.
As stated above, the range of any function is a subset of the domain of objects.

11Note that an m-ary function of e.g. order 2 will have a well-defined output for every
sequence of m inputs of order 1 of any arity. Restricting the arity of the inputs (as Frege
does) would require a significantly more complex syntax and semantics.

12Must we make this restriction? No, but failing to do so leads to various complications.
13Here I use ‘g’ as a name of a function rather than a name of a symbol. I trust the reader

can determine the meaning from the context moving forward.
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Relation symbols Ri are interpreted as functions by the model. They will
always be interpreted such that their range includes at most the two truth-values
TM (True) and FM (False), as fixed by the interpretation function A.

The symbols p and q will be used to construct names of value-ranges. For
example, px, yq(g(x, y)) refers to the value-range of the function referred to by
g. Note that only the variables within corner quotes are bound.

The symbol ı is interpreted as referring to a function from objects to objects,
mapping an object e to an object o if e is an extension and o is the unique
element of e, and mapping e to e otherwise. Intuitively, this is Frege’s version of
the definite article (‘the’ in English). This symbol does not bind any variables
within its scope.

I will close the domain of functions under the following operation: given
any function of multiple arguments, one may hold some but not all of those
arguments fixed at particular inputs, thereby defining a new function with the
corresponding value-range. For example, if g(x, y) refers to a function in the
domain and c refers to an object in the domain, then g(c, y) also refers to a
function in the domain (in this case, a function of one argument). This will
simplify our formal theory of arithmetic below.

Importantly, terms such as g0
1,2(c, y) will be interpreted as referring to the

restriction of function g at first argument place by object c. This restriction is
a function gk

1,1(y) such that ∀y gk1,1(y) = g0
1,2(c, y).

In particular, this allows us to quantify into a value-range expression. For
example, ∀xpyq(g0

1,2(x, y)) = c is a sentence which states that every restriction
of function g at first argument place has a value-range equal to object c.

An interpretation I of a language L will be an ordered pair consisting of a
model M of L and an assignment β mapping each variable in L to an object
in O or function in G of the appropriate type with the appropriate range (as
fixed by ◦).14

Note that this implies that for every non-logical symbol in the language
(including variables), there must be at least one element in the domain of the
appropriate type.

In the definition of a language above I have chosen to allow the set of variables
to vary across languages. This allows more freedom with respect to the domain
of functions and relations G, since otherwise every G would need to contain
functions and relations of every possible order and arity. Recall that for every
selected variable type, there must be countably many variables of that type.

Interpretations of arbitrary well-formed formulas are defined in the natural
way, with one exception. The semantics for quantifiers is defined in such a way
that one extends the language and interpretation with appropriate constants in
order to determine truth-value. This allows my use of restrictions of functions
mentioned above without additional complications. A rigorous development of

14Given the semantics, e.g. g(x, y) can never be interpreted by an interpretation as the
restriction of the function gM by β(x) at first argument applied to β(y). Instead, g(x, y) will
always be interpreted as the result of applying gM, a function of arity 2, to arguments β(x)
and β(y). This is to avoid complicating the syntax and semantics. Of course, this makes little
difference in practice.
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the semantics is contained in the Appendix.

3.2 Derivation System

Our derivation system is an extension of a standard higher-order derivation
system without a comprehension scheme, where this extension includes Frege’s
Basic Laws V and VI. Note, however, that higher-order quantifiers range over
the domain of functions and relations G, typed by each distinct variable type,
rather than e.g. subsets of the domain of objects O. See the Appendix for a
rigorous development of the semantics.

Moving forward, I will use the ¯ symbol in order to define meta-variables
which are meant to range over variables of all types (e.g. x̄). Within a context,
all such variables must be of the appropriate types, however.

In order to simplify the semantics (i.e. in order to avoid the annoyance of
general function symbol terms appearing in formula position, which Frege ad-
dressed with his horizontal), I have distinguished function symbols and variables
from relation symbols and variables. Hence, many of our pairs of axiom schemes
could in principle be reduced to a single axiom scheme.

The first two additional axiom schemes govern function restriction.

(L1) ∀fn,m+1∃hn,m∀x̄1, ..., x̄m(f(x̄1, ..., ti, ...x̄m) = h(x̄1, ..., x̄m)), where the
scope of h includes all variables x̄i but does not include the term ti, which
must not contain any variables outside of the scope of a value-range ex-
pression.

(L2) ∀V n,m+1∃Wn,m∀x̄1, ..., x̄m(V (x̄1, ..., ti, ...x̄m)↔W (x̄1, ..., x̄m)), where the
scope of W includes all variables x̄i but does not include the term ti, which
must not contain any variables outside the scope of a value-range expres-
sion.

Let’s also explicitly state that T 6= F :

(L3) ¬T = F

We will extend the system with Frege’s Basic Laws V and VI. Note that
given our syntactic distinction between function symbols and relation symbols,
Basic Law V has been split into a pair of axioms. Our more general version of
Basic Law V, which allows for cases of terms that do not contain variables, is
needed to accommodate our allowance for restrictions of functions.

(Va) ∀gn,k∀hn,k(px̄1, ..., x̄mq(g(t1, ..., tk)) = px̄1, ..., x̄mq(h(tl, ..., to))↔ ∀x̄1, ..., x̄m(g(t1, ..., tk) =
h(tl, ..., to))), where the sequence t1, ..., tk and the sequence tl, ..., to in-
cludes no variables other than x̄1, ..., x̄m outside the scope of a value-range
expression.

(Vb) ∀Pn,k∀Qn,k(px̄1, ..., x̄mq(P (t1, ..., tk)) = px̄1, ..., x̄mq(Q(tl, ..., to))↔ ∀x̄1, ..., x̄m(P (t1, ..., tk)↔
Q(tl, ..., to))), where the sequence t1, ..., tk and the sequence tl, ..., to in-
cludes no variables other than x̄1, ..., x̄m outside the scope of a value-range
expression.
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(VI) ∀x̄(x̄ = ı(pȳq(x̄ = ȳ)))

We will add additional axioms governing arithmetic as we proceed.

3.3 Arithmetic

In a section titled “Special definitions” (Frege 1893, pg. 52), Frege immediately
introduces a new symbol _ meant to be interpreted as a function of two ob-
ject variables, intended to be an object and a value-range, where this function
outputs the result of applying a function having that value-range to the object.

Since this definition is fundamental to Frege’s development of arithmetic, I
will describe it in detail. This will also show my general approach to formulating
Frege’s definitions within our framework.

Given our fundamental syntactic restriction, we will replace Frege’s definition
by two axioms introducing the relation symbol R0 and the function symbol _:

(A1) ∀x∀y∀z(R0(x, y, z)↔ (∃f(y = pwqf(w)∧f(x) = z)∨∃V (y = pwqV (w)∧
V (x) ∧ z = T )))

So, the relation referred to by R0 holds of x, y, and z if y is the value-range
of a function that maps x to z or y is the extension of a property that x
has and z is the True (i.e. the output of that property on input x).

(A2) ∀x∀y(x _ y = ı(pzqR0(x, y, z)))

So, a _ b refers to the result of applying the function or relation of which
b is the value-range to a. If b is the value-range of a property that a does
not have, then this expression will refer to the empty extension.

Note that a _ b will also refer to the empty extension if b does not refer to
a value-range. If b refers to the extension of a property that the referent of a
has, then a _ b will refer to the True.

Frege makes extensive use of the analogue of this function for functions of
two arguments. I will axiomatize it separately, introducing the relation symbol
R1 and the function symbol _1,3:15

(A3) ∀x1∀x2∀y∀z(R1(x1, x2, y, z) ↔ (∃f(y = pw1, w2qf(w1, w2) ∧ f(x1, x2) =
z) ∨ ∃V (y = pw1, w2qV (w1, w2) ∧ V (x1, x2) ∧ z = T )))

R1 is simply the four-place analogue of R0.

(A4) ∀x1∀x2∀y(_1,3 (x1, x2, y) = ı(pzqR1(x1, x2, y, z)))

15My axiomatization behaves slightly differently from Frege’s definition when the third term
of _1,3 does not refer to a value-range (Frege’s will refer to the False; mine will refer to the
empty extension). Some definitions below also behave slightly differently. This won’t make
any difference moving forward. In several cases I also use second-order quantification where
Frege did not in order to greatly simplify proofs below.
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What follows are a series of definitions needed to define equinumerosity and
natural number. Let me make a few remarks. See the Appendix for an explicit
development.

Frege’s classical definition of “the number of” is the following: the number
of y’s, where y is the extension of a property, is the extension of a property
R(y, z) (i.e. the restriction of a relation R by y) that holds of z exactly if there
exists a bijective relation holding between the objects in extensions y and z.
Translated into set-theoretic terms, the number of y’s would be the set of all
sets equinumerous with y.

Frege defines 0 and 1 explicitly: 0 is the number of the value-range of the
property I call C0, defined as x 6= x (i.e. a property with empty extension). 1 is
the number of the value-range of the property C1 holding of extensions equal to
the extension of C0. The remaining natural numbers can be explicitly defined
at this point, but Frege himself defines them via the successor function.

Frege then defines the property “being a cardinal number” as follows: x is a
cardinal number if and only if there exists a y such that the number of y’s is x.

The next task is to define the successor relation. To do so, Frege defines a
relation that holds between two numbers x and y if x is the number of objects
with some property P distinct from some object with property P and y is the
number of all objects with property P . The successor value-range is then defined
as the value-range of this relation.

Frege then states six theorems without proof that characterize the definitions
introduced so far. See the Appendix for my own proofs of these theorems.

Theorem 1: If x is the successor of 0, then x = 1.

Theorem 2: For any x, if the number of a property P with extension x is 1,
then there exists a y with property P .

Theorem 3: For any x, y, z, if the number of a property P with extension x is
1 and y has property P and z has property P , then y = z.

Theorem 4: For any x, if x is the extension of a property P such that for any
y, if y has P and any z has P then y = z, then if there is any object at
all with property P , then the number of P ’s is 1.

Theorem 5: Any object has at most one predecessor and at most one successor.

Theorem 6: Any cardinal number other than 0 is such that there exists a
predecessor of it.

Frege nowhere argues that the successor of any number is distinct from
that number. It certainly isn’t. Consider a bijection between the extension
containing all natural numbers except for 0 and the extension containing all
natural numbers. These two extensions have the same number and hence this
number is its own successor. A contemporary mathematician may prefer a
different definition of the successor relation.

13



To fully characterize the natural numbers, Frege introduces a definition of
what it is for an object to follow another object in a series. This definition is a
bit complex. Here it is in full:

y follows x in the z-series if and only if z is the extension of a binary relation
W and for any property V , if whenever V holds of v1 it follows that any v2 that
v1 bears W to also has property V , then if for any v3 such that x bears W with
v3, v3 has property V , then y has property V .

In effect, this relation holds whenever from any property being transmitted
down the z-series and x being such that bearing the relation to an object implies
that object has that property, it follows that y has that property. That is, in
this case all properties transmitted down the series are such that if x transmits
them then y also has them.

Frege can then define the property of being a natural number. Anatural num-
ber is any object either identical to 0 or such that it follows 0 in the successor-
series.

Frege states a final theorem without proof. See the Appendix for my own
proof.

Theorem 7: If n belongs to the series beginning with 0 defined by the successor
relation, then the number of P ’s, where P is the property of belonging to
to the successor-series ending with n, is the successor of n.

Hence, Frege can now characterize all natural numbers explicitly as partic-
ular extensions using his successor relation.

I will end this section by stating the Dedekind-Peano Axioms, which I prove
in the Appendix.

(DP1) For every natural number n, the successor of n is a natural number.

(DP2) For all natural numbers n and m, n = m if and only if the successor of
n = the successor of m.

(DP3) 0 does not have a predecessor.

(DP4) If P is a property such that P (0) and for every natural number n, P (n)
implies P holds of the successor of n, then P (n) is true for every natural
number n.

This concludes our construction of the natural numbers within our modifi-
cation of Frege’s formal system.

3.4 Consistency

I follow the standard procedure of exhibiting a model of our axioms. What
might a natural model look like?

In any natural model of Frege’s system, every function must have a value-
range. This value-range must be an object. But since functions are defined

14



for all objects in the domain, this means that every function must have a well-
defined output given its own value-range as input.

So, suppose we translate value-ranges into sets in the natural way (value-
ranges of functions are sets of ordered tuples, etc.). This means that each value-
range will be contained within the first component of an ordered tuple contained
within itself. Any natural set-theoretic model of Frege’s formal system will be
radically non-well-founded. Every value-range provides a counterexample to the
Axiom of Foundation.

Hence, I will not use ZFC to construct the needed model. Instead, I have
chosen to use the set theory generated from removing the Axiom of Foundation
from ZFC and replacing it by the Anti-Foundation Axiom of Peter Aczel (1988):

(AFA) Every accessible pointed directed graph corresponds to a unique set.

Hence, we will construct our model by describing an appropriate accessible
pointed directed graph. An accessible pointed directed graph is a directed graph
with a distinguished node (the root) such that for any node in the graph, there
is at least one path from the root to that node.

The correspondence between such a graph and a set is the following: each
edge leads from a set to one of its elements. So, the graph with a single node
and no edges corresponds to the empty set. Such graphs can lead to non-well-
founded sets. For example, the graph containing a single node with an edge
from that node to itself corresponds to the Quine atom x = {x}.

Before proceeding to the proof, let’s consider a more complex example that
better corresponds to the sets we will need. Suppose that we have two sets T and
F such that T = {(T, T ), (F, F )} and F = {(T, F ), (F, T )}. Intuitively, T is the
extension of the property “being identical to T” (this is Frege’s actual definition)
and F is the extension of the property “being identical to F”, assuming a two-
element domain.

As is customary, let any ordered pair (a, b) = {{a}, {a, b}}. We will now use
(AFA) to prove that our two sets exist. For F , our graph will consist of a root
node F with two edges leading to two distinct nodes (T, F ) and (F, T ). Node
(T, F ) will have edges leading to two further nodes {T} and {T, F}. Node {T}
will have a single edge leading to a new node T while node {T, F} will have two
edges leading to node T and node F , respectively.

Node (F, T ) is similar to node (T, F ), with edges leading to node {F} and
node {T, F}, the former which has a single edge leading back to node F . Finally,
node T has two edges leading to nodes (T, T ) and (F, F ), each of which has a
single edge leading to node {T} or node {F}, respectively.

The graph of T is identical except the root node is now T rather than F .
Let’s call our theory FA.

Theorem 8: FA is consistent.

A sketch of a proof is contained in the Appendix.
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4 Conclusion

I have demonstrated that by modifying the syntax of the formal system con-
tained within Frege’s Grundgesetze we can keep Basic Law V while developing
arithmetic in a consistent way. This requires adding additional axioms asserting
the existence of various functions.

The motivating idea is that the problem with Frege’s formal system is not
that every function has a value-range. Instead, the problem is that the language
is “too rich”, allowing one to form predicates that don’t refer to functions on pain
of contradiction. The solution was to only allow function symbols in variable
position within higher-order functional expressions.

This has the historical advantage of allowing one to use Frege’s own defi-
nitions and carry out Frege’s own proofs. It has the philosophical advantage
of allowing one to use Frege’s own definition of number, which captures the
philosophical thesis that a statement of number contains an assertion about a
property. Finally, we saw that any natural model of Frege’s formal system will
be radically non-well-founded.

It remains to be seen whether this approach can be extended to Frege’s
treatment of the real numbers. I hope to have convinced the reader that this is
a promising path to take.

5 Appendix

5.1 Syntax

A language L will include the following symbols: (, ), ,, ¬, ∧, ∨, →, ↔, ∀,
∃, =, p, q, ı, T , F . Strictly speaking, T and F will not be considered logical
symbols, since their interpretations will be allowed to vary.

A language will also include the following object variables: v0, v1, v2,...
These variables may also be considered variables of type 0, 0.

A language may also include some combination of the following types of
variables (each type corresponds to a particular choice of n and m, with n,m ≥
1), but countably many for each selected type: f0

n,m, f1
n,m, f2

n,m,..., V0
n,m,

V1
n,m, V2

n,m,...
Lower-case variables vi will range over objects (object variables) while lower-

case variables fi
n,m will range over functions (function variables). Upper-case

variables Vi
n,m will range over functions whose range consists of at most the

two truth-values (relation variables). The first superscript indicates the order
(first-order, second-order, etc.) and the second superscript indicates the arity.16

A language may also include constants c0, c1, c2,..., m-ary function symbols
of nth order (with n,m ≥ 1) g0

n,m, g1
n,m,..., and m-ary relation symbols of nth

order (with n,m ≥ 1) R0
n,m, R1

n,m, R2
n,m,... = is also a (first-order, binary)

16One could extend the syntax to allow for what Frege called “unequal-leveled functions”,
e.g. a function that takes an object as its first argument and a function as its second argument.
This will turn out to be unnecessary for our purposes.
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relation symbol and ı is a (first-order, unary) function symbol. If a language
includes function or relation symbols of a particular type, then it must also
include countably many of the corresponding variables of that type.

Note that R0
1,1 is a first-order predicate symbol. Note also that given our

semantics, relation symbols can also be thought of as function symbols, although
they will always be interpreted as referring to functions whose range consists
of at most the two truth-values. One may extend the definition a language to
allow for uncountably many non-logical symbols in the obvious way.

For the purposes of developing arithmetic, we will only need to consider
second-order languages. I will state rules for constructing well-formed formulas
containing function symbols of arbitrary order, however.

Moving forward, I will use the symbol ¯ to indicate that I am using meta-
variable meant to range over variables of all types, e.g. x̄.

A term is any expression generated by finitely many applications of the
following rules:

(T1) All constants ci are terms of order 0.

(T2) All object variables vi are terms of order 0.

(T3) If (t1, ..., tm) is a sequence of terms of order n− 1, for n,m ≥ 1, then any
fi

n,m(t1, ..., tm) or gi
n,m(t1, ..., tm) is a term of order n.

(T4) If (t1, ..., tm) is a sequence of terms of any orders, then any fi
1,m(t1, ..., tm)

or gi
1,m(t1, ..., tm) is a term of order 1.

(T5) If x̄1, ..., x̄k are variables and gi
n,m(t1, ..., tm) is a function symbol followed

by a sequence of terms of appropriate order, then px̄1, ..., x̄kq(gi
n,m(t1, ..., tm))

is a term of order 0.

(T6) If x̄1, ..., x̄k are variables and fi
n,m(t1, ..., tm) is a function variable fol-

lowed by a sequence of terms of appropriate order, then pv̄1, ..., v̄kq(fi
n,m(t1, ..., tm))

is a term of order 0.

(T7) If v̄1, ..., v̄k are variables and Ri
n,m(t1, ..., tm) is a relation symbol followed

by a sequence of terms of appropriate order, then px̄1, ..., x̄kq(Ri
n,m(t1, ..., tm))

is a term of order 0.

(T8) If x̄1, ..., x̄k are variables and Vi
n,m(t1, ..., tm) is a relation variable fol-

lowed by a sequence of terms of appropriate order, then px̄1, ..., x̄kq(Vi
n,m(t1, ..., tm))

is a term of order 0.

(T9) If t1 is a term, then ı(t1) is a term of order 0.

Note that the expression f0
1,2(c0, c1) is a term of order 1 rather than a term

of order 0. When placed within the scope of a second-order function symbol, the
two constants are ignored and it is instead the function symbol that is treated
as argument. This avoids additional syntactic complications.
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Frege himself would include arbitrary well-formed formulas as terms. Re-
call our fundamental syntactic restriction. The expression pv0q(R0

1,1(v0) ∧
R1

1,1(v0)) is not a term.
A formula is any expression generated by finitely many applications of the

following rules:

(F1) If t1 and t2 are terms, then = (t1, t2) is an atomic formula of order 1.

(F2) If t1, ..., tm are terms of order n−1, then anyRi
n,m(t1, ..., tm) or Vi

n,m(t1, ..., tm)
is an atomic formula of order n.

(F3) If ϕ1, ..., ϕm are atomic formulas of order n−1, then any Ri
n,m(ϕ1, ..., ϕm)

or Vi
n,m(ϕ1, ..., ϕm), where no ϕj is an identity formula, is an atomic

formula of order n.

(F4) If t1, ..., tm are terms of any orders, then anyRi
1,m(t1, ..., tm) or Vi

1,m(t1, ..., tm)
is an atomic formula of order 1.

(F5) If ϕ is a formula, then ¬ϕ is also a formula.

(F6) If ϕ and ψ are formulas, then (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ → ψ), and (ϕ ↔ ψ)
are also formulas.

(F7) If ϕ is a formula and x̄ is a variable, then ∀x̄ϕ and ∃x̄ϕ are also formulas.

Variables of the appropriate type within the scope of a quantifier or pq
expression are bound. Also, within the scope of a higher-order function symbol
or relation symbol that is not itself within the scope of a first-order function
symbol or relation symbol, every variable of order lower than the order of the
function’s arguments is bound.

5.2 Semantics

A model M is an ordered tuple consisting of a domain of objects O, a domain of
functions G, an interpretation function A, and a value-range function ◦. Each
element of G will have a type fixing order and arity.17

The value-range function ◦ will have the domain of functions G as its domain,
mapping every element g of G to an element o of O, where o is the value-range
of g.18 Of course, o will be constrained by the order and arity of the function g.
As stated above, the range of any function is a subset of the domain of objects.

The symbols p and q will be used to construct a name of a value-range. For
example, px, yq(g(x, y)) refers to the value-range of the function referred to by
g. Note that only the variables within corner quotes are bound.

17Note that an m-ary function of e.g. order 2 will have a well-defined output for every
sequence of m inputs of order 1 of any arity. Restricting the arity of the inputs (as Frege
does) would require a significantly more complex syntax and semantics.

18Here I use ‘g’ as a name of a function rather than a name of a symbol. I trust the reader
can determine the meaning from the context moving forward.
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The symbol ı is interpreted as referring to a function from objects to objects,
mapping an object e to an object o if e is an extension and o is the unique
element of e, and mapping e to e otherwise. Intuitively, this is Frege’s version of
the definite article (‘the’ in English). This symbol does not bind any variables
within its scope.

I will close the domain of first-order functions under the following operation:
given any first-order function of multiple arguments, one may hold some but not
all of those arguments fixed at particular inputs, thereby defining a new function
with the corresponding value-range. For example, if g(x, y) refers to a function
in the domain and c refers to an object in the domain, then g(c, y) also refers
to a function in the domain (in this case, a function of one argument). This
simplifies our formal theory of arithmetic and quantification into value-range
expressions.

More carefully, the value-range function ◦ maps each element of G to a set of
ordered pairs in O whose first component is either an object in O or function in
G of the appropriate type if the element of G has arity 1 or an ordered n-tuple
consisting of objects in O or functions in G of the appropriate type if the element
of G has arity n > 1. All elements in the n-tuple must be of the same order.
The second component is always an object in O, and is of course subject to the
constraint that for each first component there is a unique second component
in the set of ordered pairs. The output of ◦ will always be referred to as the
value-range of its input, and if the second component of the ordered pairs in the
output are always truth-values (as fixed by the interpretation function below)
then the value-range will also be referred to as the extension of the input.
◦ maps each relation in G of arity 1 to a set containing objects in O or

functions or relations in G of the appropriate type. ◦ maps each relation in G
of arity n > 1 to a set of ordered tuples in O of objects in O or functions in G
of the appropriate type. Any such value-range is also known as an extension.

Furthermore, a modelM of a language L includes an interpretation function
A mapping T and F to objects TM and FM in O, where TM 6= FM, each
constant symbol ci to an object ci

M in O, each relation symbol Ri
n,m to a

function Ri
n,m,M in G of order n and arity m whose range consists of at most

the two truth-values (as fixed by ◦), and each function symbol gi
n,m to a function

gi
n,m,M in G of order n with arity m.

=M is the first-order identity relation, a function mapping a pair of objects
to TM if the first object is identical to the second object and FM otherwise.

For any variable of any type, the application of A to that variable results in
that variable as output. For example, vi

M = vi.
For any term ti containing constants, function symbols, relation symbols, or

variables as components where either all terms contain variables or all terms
do not contain variables, ti

M consists of the application of A to each such
component.19

For any term ti containing a function symbol or relation symbol or variable

19Note that e.g. g11,1(v1)M consists of the sequence g11,1,M, v1. The first element is a
function in G and the second element is a variable in L (an element of the syntax).

19



of order 1 followed by a sequence of terms t1, ..., tn within its scope including
some but not all terms tj containing no variables, ti

M consists of the result
of holding the arguments tj fixed by virtue of their interpretations tj

M. For
example, g1

1,2(c1, v1)M is the sequence consisting of the function of arity 1 in G
resulting from holding the first argument place of g1

1,2,M fixed at c1
M followed

by the variable v1.
We must also fix the interpretations of our non-standard symbols. For any

variables x1, ..., xk and y1, ..., ym of order 0 and any function symbol gi
o,m or rela-

tion symbolRi
o,m, Amaps px1, ..., xkq(gi

o,m(y1, ..., ym)) and px1, ..., xkq(Ri
o,m(y1, ..., ym))

to ◦(gio,m,M) and ◦(Ri
o,m,M), respectively.

If in gi
o,m(t1, ..., tm) or Ri

o,m(t1, ..., tm) the sequence t1, ..., tm includes terms
that do not contain any variables in addition to free object variables, then
A maps px1, ..., xkq(gi

o,m(t1, ..., tm)) and px1, ..., xkq(Ri
o,m(t1, ..., tm)) to the

result of applying ◦ to the function or relation resulting from gi
o,m or Ri

o,m

with the appropriate arguments held fixed by the interpretations of the terms
ti which do not contain any variables.

If in gi
n,m(t1, ..., tm) or Ri

n,m(t1, ..., tm) the sequence t1, ..., tm does not con-
tain any free variables, thenAmaps px̄1, ..., x̄kq(gi

n,m(t1, ..., tm)) and px̄1, ..., x̄kq(Ri
n,m(t1, ..., tm))

to ◦(gin,m,M) and ◦(Ri
n,m,M), respectively.

For any term ti that does not contain free variables, if ti
M is in the range

of ◦ and is an extension with a unique element o that is not a tuple (that is, o
is the first component of the unique ordered pair in ti

M with TM as its second
component, if it exists, and o is not a tuple), then A maps ı(ti) to o. In any
other case, A maps ı(ti) to ti

M.
An interpretation I of a language L will be an ordered pair consisting of a

model M of L and an assignment β mapping each variable in L to an object
in O or function in G of the appropriate type with the appropriate range (as
fixed by ◦).20

Note that this implies that for every non-logical symbol in the language
(including variables), there must be at least one element in the domain of the
appropriate type.

In the definition of a language above I have chosen to allow the set of variables
to vary across languages. This allows more freedom with respect to the domain
of functions G, since otherwise every G would need to contain functions of every
possible order and arity. Recall that for every selected variable type, there must
be countably many variables of that type.

Let next define the interpretation I of arbitrary terms using ◦M.
For any term ti that does not contain a function symbol outside of the scope

of pq, ti
◦M = ti

M.
For any function symbol gi

n,m outside of the scope of pq and sequence of
terms t1, ..., tm which do not contain free variables outside the scope of pq,

20Given the semantics, e.g. g(x, y) can never be interpreted by an interpretation as the
restriction of the function gM by β(x) at first argument applied to β(y). Instead, g(x, y) will
always be interpreted as the result of applying gM, a function of arity 2, to arguments β(x)
and β(y). This is to avoid complicating the syntax and semantics. Of course, this makes little
difference in practice.
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gi
n,m(t1, ..., tm)◦M is the second component of the ordered pair with first com-

ponent (t1
◦M, ..., tm

◦M) contained in ◦(gin,m,M).
If any ti do contain free variables outside the scope of pq, then gi

n,m(t1, ..., tm)◦M =
gi

n,m(t1, ..., tm) (i.e. it remains an expression of the language).

(I1) For terms ti that do not contain free variables outside the scope of pq,
I(ti) = ti

◦M.

(I2) For terms ti that do contain free variables tj outside the scope of pq,
extend the language by introducing new constants, function symbols, or
relation symbols of the appropriate type: rtj . Now extend the model M
to M′, which is just like M except for each tj , rtj

M′
= β(tj). Convert ti

to a term t′i with all free variables outside the scope of pq replaced by the

terms just introduced. Finally, I(ti) = t′i
◦M′

.

It remains to define truth in a model relative to an assignment. If a formula
is not true in a model relative to an assignment, then it is false in that model
relative to that assignment. If a formula contains no free variables or only
contains free variables within the scope of pq, then we can also say that it is
simply true in a model.

(T1) = (ti, tj) is true in M relative to assignment β if I(ti) = I(tj).

(T2) Ri
n,m(t1, ..., tm) is true inM relative to assignment β if the second com-

ponent of the ordered pair contained in ◦(Ri
n,m,M) with first component

(I(t1), ..., I(tm)) is TM.

(T3) Vi
n,m(t1, ..., tm) is true in M relative to assignment β if the second com-

ponent of the ordered pair contained in ◦(β(Vi
n,m)) with first component

(I(t1), ..., I(tm)) is TM.

(T4) Where ϕ1, ..., ϕm are atomic formulas either beginning with a relation
symbol Rj (including =) or a relation variable Vj , Ri

n,m(ϕ1, ..., ϕm) is true
inM relative to assignment β if the second component of the ordered pair
contained in ◦(Ri

n,m,M) with first component (u1, ..., um) is TM. If there
are no terms of order 0 within the scope of pq without free variables and
all the terms in ϕi all contain free variables outside of the scope of pq or all
do not contain free variables except those within the scope of pq, then ui
is the interpretation of the relation symbol or relation variable beginning
ϕi by modelM relative to assignment β. If either there are terms of order
0 within the scope of pq or some but not all terms in ϕi do not contain free
variables except those within the scope of pq, then ui is the appropriate
restriction (at the relevant argument places by the interpretations of the
relevant terms) of the interpretation of the expression beginning ϕi by
model M relative to assignment β.21

21In the former case, one first restricts functions within the scope of pq and then restricts
the outer function. Recall that functions can only be restricted by objects.
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(T5) Where ϕ1, ..., ϕm are atomic formulas either beginning with a relation
symbol Rj (including =) or a relation variable Vj , Vi

n,m(ϕ1, ..., ϕm) is true
inM relative to assignment β if the second component of the ordered pair
contained in ◦(β(Vi

n,m)) with first component (u1, ..., um) is TM. If there
are no terms of order 0 within the scope of pq without free variables and
all the terms in ϕi all contain free variables outside of the scope of pq or all
do not contain free variables except those within the scope of pq, then ui
is the interpretation of the relation symbol or relation variable beginning
ϕi by modelM relative to assignment β. If either there are terms of order
0 within the scope of pq or some but not all terms in ϕi do not contain free
variables except those within the scope of pq, then ui is the appropriate
restriction (at the relevant argument places by the interpretations of the
relevant terms) of the interpretation of the expression beginning ϕi by
model M relative to assignment β.

(T6) ¬ϕ is true inM relative to assignment β exactly if ϕ is false inM relative
to assignment β.

(T7) (ϕ∧ψ) is true inM relative to assignment β exactly if both ϕ and ψ are
true in M relative to assignment β.

(T8) (ϕ ∨ ψ) is true in M relative to assignment β exactly if either ϕ or ψ is
true in M relative to assignment β or both are.

(T9) (ϕ→ ψ) is true inM relative to assignment β exactly if either ¬ϕ is true
inM relative to assignment β or ψ is true inM relative to assignment β.

(T10) (ϕ ↔ ψ) is true in M relative to assignment β exactly if either both ϕ
and ψ are true in M relative to assignment β or both ϕ and ψ are false
in M relative to assignment β.

(T11) For any variable x̄, ∀x̄ϕ is true in M relative to assignment β exactly
if we were to extend the language with an appropriate constant, function
symbol, or relation symbol of the relevant type, any extension of the
interpretation function A to include that symbol as input would be such
that if we were to replace each instance of x̄ free in ϕ by that new symbol,
the resulting formula would be true in M relative to assignment β.22

(T12) For any variable x̄, ∃x̄ϕ is true in M relative to assignment β exactly
if we were to extend the language with an appropriate constant, function
symbol, or relation symbol of the relevant type, there is some extension of
the interpretation function A to include that symbol as input that would
be such that if we were to replace each instance of x̄ free in ϕ by that new
symbol, the resulting formula would be true in M relative to assignment
β.

22Note that this allows one to restrict a function relative to a quantifier. ∀x(pyqg(x, y) = c)
will be true if any restriction of g at first argument place has value-range c.
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5.3 Derivation System

The derivation system is described in section 3.2 above.

5.4 Towards a Formal Theory of Arithmetic

Moving forward, I will introduce axioms for convenience and axioms of necessity.
When an axiom is introduced merely for convenience, I will flag it with an
asterisk. Axioms introduced for convenience define function symbols that are
never actually used as arguments for higher-order function symbols, and hence
one could technically do without them in what follows. I have chosen to keep
my axioms nearly as weak as possible (minimalism over elegance). I will follow
Frege’s own definitions quite closely. Note that many of Frege’s definitions are
designed to use value-ranges to avoid the use of second-order functions.

5.4.1 Defining the Natural Numbers

In a section titled “Special definitions” (Frege 1893, pg. 52), Frege immediately
introduces a new symbol _ meant to be interpreted as a function of two ob-
ject variables, intended to be an object and a value-range, where this function
outputs the result of applying a function having that value-range to the object.
Given our fundamental syntactic restriction, we will replace Frege’s definition
by two axioms introducing the relation symbol R0 and the function symbol _:

(A1) ∀x∀y∀z(R0(x, y, z)↔ (∃f(y = pwqf(w)∧f(x) = z)∨∃V (y = pwqV (w)∧
V (x) ∧ z = T )))

So, the relation referred to by R0 holds of x, y, and z if y is the value-range
of a function that maps x to z or y is the extension of a property that x
has and z is the True (i.e. the output of that property on input x).

(A2) ∀x∀y(x _ y = ı(pzqR0(x, y, z)))

Note that a _ b will refer to the empty extension if b does not refer to a
value-range. If b refers to the extension of a property that the referent of a has,
then a _ b will refer to the True.

Frege makes extensive use of the analogue of this function for functions of two
arguments. I have chosen to axiomatize it separately, introducing the relation
symbol R1 and the function symbol _1,3:23

(A3) ∀x1∀x2∀y∀z(R1(x1, x2, y, z) ↔ (∃f(y = pw1, w2qf(w1, w2) ∧ f(x1, x2) =
z) ∨ ∃V (y = pw1, w2qV (w1, w2) ∧ V (x1, x2) ∧ z = T )))

R1 is simply the four-place analogue of R0.

23My axiomatization behaves slightly differently from Frege’s definition when the third term
of _1,3 does not refer to a value-range (Frege’s will refer to the False; mine will refer to the
empty extension). Several of my definitions below are also slightly different. This won’t make
any difference moving forward. In several cases I will also use second-order quantification
where Frege did not in order to greatly simplify proofs below.
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(A4) ∀x1∀x2∀y(_1,3 (x1, x2, y) = ı(pzqR1(x1, x2, y, z)))

Frege next introduces a new function symbol in order to define a function
that maps an object to the True if that object is the extension of a binary
relation R(x, y) such that each object only bears the relation to a unique object,
if any. That is, in such a case R(x, y) and R(x, z) implies y = z. Frege calls
such a relation single-valued. I will introduce a new predicate symbol I via the
following axiom:24

(A5*) ∀x(I(x)↔ (∃R(x = py, zqR(y, z))∧∀y∀z(_1,3 (y, z, x) = T → ∀w(_1,3

(y, w, x) = T → z = w))))

With the preliminaries out of the way, we can move toward the definitions
of the natural numbers. The first step is to define equinumerosity between
properties. To begin, we will introduce a three-place relation symbol R2, where
the relation holds between the extension of a binary relation and two property
extensions if the binary relation is single-valued and correlates every object with
the first property with a unique object with the second property.

(A6) ∀x∀y∀z(R2(x, y, z) ↔ (I(x) ∧ ∃V (y = pvqV (v)) ∧ ∃W (z = pvqW (v)) ∧
∀w((w _ y) = T → ∃v(_1,3 (w, v, x) = T ∧ (v _ z) = T ))))

Next we’ll introduce a new function symbol 〉 which maps objects to value-
ranges:25

(A7*) ∀x(〉(x) = py, zqR2(x, y, z))

Consider the expression _1,3 (y, z, 〉(x)). This expression will refer to the
True if and only if y and z are extensions of properties and x is the extension of
a single-valued relation R that correlates every object in y with an object in z.
Hence, for any x that is the extension of a binary relation, 〉(x) will refer to an
extension of all pairs of property extensions that are correlated by that relation.

Next we will introduce an expression / to handle the converse of a binary
relation, moving closer to our definition of equinumerosity. First, I will close
the domain of first-order binary relations under converse. Then I will introduce
a new relation R3(x, y). Then I will define the new expression:

(A8) ∀V ∃W∀x∀y(V (x, y)↔W (y, x))

(A9) ∀x∀y(R3(x, y) ↔ ∃V (x = pv, wqV (v, w) ∧ ∃W (y = pv, wqW (v, w) ∧
∀v∀w(V (v, w)↔W (w, v)))))

This relation holds if x and y are the extensions of first-order binary
relations that are converses of each other.

24This axiom is optional because I(x) will not be used as the input to a second-order
function such as the value-range function and thereby could always be replaced by a formula.

25The function 〉 is optional because Frege only uses it in cases in which we could replace it
with R2.
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(A10) ∀x(/(x) = ıpyqR3(x, y))

Consider the following sentence: _1,3 (a, b, 〉(c)) = T∧ _1,3 (b, a, 〉(/c)) =
T ). This sentence will be true exactly if c refers to the extension of a binary
relation R and a and b refer to the extensions of properties such that R correlates
the first property with the second and the converse of R correlates the second
property with the first.

Hence, the sentence ∃x(_1,3 (a, b, 〉(x)) = T∧_1,3 (b, a, 〉(/x)) = T )) states
that properties with extensions a and b are equinumerous. Note that given our
allowance for a restricted domain of functions within a model, this sentence
will only be true if there does in fact exist such a relation. That is to say, the
existence of a relation with extension x is not guaranteed.

Now we can state Frege’s classical definition of “the number of P s”: the
extension of the property “being equinumerous with P”.26 I will use the symbol
# for this purpose. First we’ll introduce the relation R4, then the function
referred to by #:27

(A11) ∀y∀z(R4(y, z)↔ ∃x(_1,3 (y, z, 〉x) = T∧_1,3 (z, y, 〉 / x) = T ))

(A12*) ∀y(#(y) = pzqR4(y, z))

Next, we will introduce predicates C0 and C1 that can be used to define 0
and 1 explicitly:

(A13.0) ∀x(C0(x)↔ ¬(x = x))

(A13.1) ∀x(C1(x)↔ x = pyqC0(y))

Since every object is identical with itself, the extension of C0 is empty. The
extension of C1 only contains the extension of C0. We can now explicitly define
the numbers 0 and 1 (note that the following are definitions rather than axioms):

(D0) 0 = #pxqC0(x)

(D1) 1 = #pxqC1(x)

Frege then defines the property “being a cardinal number”, which we will
express using C, as follows:

(A14) ∀x(C(x)↔ ∃y#y = x)

At this point, we could define the remaining natural numbers explicitly by
introducing predicates Ci. Frege instead defines a successor relation and uses
it to define the remaining natural numbers. Theorem 7 will characterize the
remaining natural numbers as the numbers of particular properties.

To do so, Frege specifies a sentence that he interprets as stating that b follows
a immediately in the number series. To follow him, we will define the relations
R5 and R6:

26Actually we will follow Frege in defining this function and property in terms of extensions.
27The axiom defining # is for convenience since we will not be using this function as an

argument for a second-order function, and hence it could be replaced by a term throughout.
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(A15) ∀x∀y∀z(R5(x, y, z)↔ x _ y = T ∧ ¬x = z)

This relation holds exactly if y is the extension of a property that x has
where x is distinct from z.

(A16) ∀x∀y(R6(x, y)↔ ∃z∃w(#pvqR5(v, z, w) = x ∧ w _ z = T ∧#z = y))

This relation holds exactly if there is some property P such that x is the
number of objects with that property that are distinct from some object that
also has that property and y is the number of all the objects with that property.
So, if the number of P ’s is 3, then x will be 2 and y will be 3.

Frege then defines the successor extension as the extension of R6:

(D2) s = px, yqR6(x, y)

Hence, _1,3 (0, 1, s) = T states that 1 is the successor of 0.
Frege then states the following theorems without proof. I will sketch proofs

below. As usual, we will need to assert the existence of various functions due
to our fundamental syntactic constraint.

Theorem 1: ∀x(_1,3 (0, x, s) = T → x = 1)

If x is the successor of 0, then x = 1.

Theorem 2: ∀x(#x = 1→ ∃y(y _ x = T ))

For any x, if the number of a property P with extension x is 1, then there
exists a y with property P .

Theorem 3: ∀x∀y∀z((#x = 1 ∧ y _ x = T ∧ z _ x = T )→ y = z)

For any x, y, z, if the number of a property P with extension x is 1 and y
has property P and z has property P , then y = z.

Theorem 4: ∀x((∀y(y _ x = T → ∀z(z _ x = T → y = z))) → ((∃w(w _
x = T )→ #x = 1)))

For any x, if x is the extension of a property P such that for any y, if y
has P and any z has P then y = z, then if there is any object at all with
property P , then the number of P ’s is 1.

Theorem 5: I(/s) ∧ I(s)

Any object has at most one predecessor and at most one successor.

Theorem 6: ∀x(∃y#y = x→ (¬x = 0→ ∃z _1,3 (z, x, s) = T ))

Any cardinal number other than 0 is such that there exists a predecessor
of it.

Here I will sketch proofs of these theorems.
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For theorems 1, 4, and 5, I will assert the closure of single-valued binary
relations with single-valued converses under exchange of one element with an-
other (A17). Consider a bijective function mapping a to b and c to d. Simply
map a to d and c to b instead.28

For theorem 5, we will also need two additional axioms (A18) and (A19)
allowing the definition of a new relation via the addition and removal of elements
of a bijective relation. Intuitively if R holds between a and b, c and d, and e and
f , all of which are distinct, then one should be able to define a new bijective
relation also holding between g and h, and one should also be able to define a
new bijective relation not holding between e and f .

Finally, for theorem 6, I will close the domain of properties under the fol-
lowing restriction: if the extension of a property is nonempty, then there exists
a property that holds of all and only instances of that property except some
particular object (A20).

(A17) ∀V ((I(py, zqV (y, z)))∧I(/py, zqV (y, z))→ ((∀x∀y∀z∀w((V (x, y)∧V (z, w)∧
y 6= w)→ ∃W (∀v1∀v2((x 6= v1∧z 6= v1∧y 6= v2∧w 6= v2)→ ((V (v1, v2)↔
W (v1, v2)) ∧W (x,w) ∧W (z, y) ∧ ¬W (x, y) ∧ ¬W (z, w))))))))

(A18) ∀V ((I(py, zqV (y, z)))∧I(/py, zqV (y, z))→ ((∀x∀y((¬∃z(V (x, z)∨V (z, y))→
∃W (∀v1∀v2((x 6= v1 ∧ y 6= v2)→ (V (v1, v2)↔W (v1, v2)))∧W (x, y)))))))

(A19) ∀V ((I(py, zqV (y, z)))∧I(/py, zqV (y, z))→ ((∀x∀y(V (x, y)→ ∃W (∀v1∀v2((x 6=
v1 ∧ y 6= v2)→ (V (v1, v2)↔W (v1, v2))) ∧ ¬W (x, y))))))

(A20) ∀V (∃xV (x)→ ∃W∃y(∀z(y 6= z → (V (z)↔W (z))) ∧ V (y) ∧ ¬W (y)))

Theorem 1: ∀x(_1,3 (0, x, s) = T → x = 1)

Proof. Assume _1,3 (0, c, s) = T . Hence by (A3) and (A4) 0 and c bear a
relation with extension s. Hence by (D2) and (A16) there is some property P
such that c is the number of objects with that property and 0 is the number of
objects that have that property other than some object that has that property.

It remains to show that P must be equinumerous with C1. To do so, we
must show that there exists a relation that correlates P with C1 such that its
converse correlates C1 with P .

There must exist a property Q holding of all and only objects with property
P other than some particular object such that the number of Q’s is 0. Hence
there exists a relation R such that R correlates C0 with Q and its converse
correlates Q with C0. Since every object is self-identical, any single-valued
binary relation trivially correlates C0 with Q by (A6). But if any object had
property Q, then the converse of R would have to map that object to an object
with property C0, and hence no object has property Q. Hence there is a unique
object a with property P .

28Once we define the natural numbers, repeated applications of (A17) can be used to prove
that e.g. ∀P (#pxqP (x) = 3↔ ∃y∃z∃w(P (y)∧P (z)∧P (w)∧y 6= z∧y 6= w∧z 6= w∧∀v(P (v)→
(v = y ∨ v = z ∨ v = w))))).
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If x is an element of the extension of C1, then x is the extension of C0, i.e.
x is the empty extension. But by (A17) there exists a single-valued relation S
whose converse is a single-valued relation such that S holds between a and the
empty extension (simply modify the identity relation, mapping a to the empty
extension and the empty extension to a). S thereby establishes equinumerosity
between P and C1, thus completing the proof.

Theorem 2: ∀x(#x = 1→ ∃y(y _ x = T ))

Proof. Assume #c = 1. Hence there exists a property P with extension c such
that the number of P ’s is 1. Hence C1 is equinumerous with P . Hence there
exists a single-valued relation R with a single-valued converse that correlates C1

with P such that its converse correlates P with C1. But if P had no instances,
then by (A6) C1 couldn’t have any instances either. But the extension of C0 is
an instance of C1. Hence P has an instance.

Theorem 3: ∀x∀y∀z((#x = 1 ∧ y _ x = T ∧ z _ x = T )→ y = z)

Proof. Assume #c = 1 ∧ a _ c = T ∧ b _ c = T . Hence there is a property
P such that c is the extension of P , a has property P , and b has property
P . Furthermore, C1 is equinumerous with P . But then there exists a single-
valued relation R that correlates C1 with P with a single-valued converse that
correlates P with C1. The converse of R must hold between a and the empty
extension, since that is the only element of the extension of C1. But then it
also must hold between b and the empty extension. But then R holds between
the empty extension and a and between the empty extension and b. But R is
single-valued, and hence a = b.

Theorem 4: ∀x((∀y(y _ x = T → ∀z(z _ x = T → y = z))) → ((∃w(w _
x = T )→ #x = 1)))

Proof. Assume ∀y(y _ a = T → ∀z(z _ a = T → b = z)) and ∃w(w _ a =
T )). Hence a is the extension of a property P such that there exists a unique
instance of P . Call this instance a. It remains to show that C1 is equinumerous
with P . But this follows from axiom (A17) in the same manner as in the proof
of Theorem 1 (note that equinumerosity can easily be shown to be symmetric
via the converse of the correlating relation).

Theorem 5: I(/s) ∧ I(s)

Proof. Let R be a relation with extension s (e.g. R6). Suppose R(a, b) and
R(a, c). We want to show that b = c. a is the number of P ’s for some property
P and is also the number of W ’s for some property W . b is the number of Q’s for
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some property Q, and c is the number of S’s for some property S. Furthermore,
P holds of all and only objects with property Q other than some particular
object o1 and W holds of all and only objects with property S other than some
particular object o2 (not necessarily the same as o1).

Since a is both the number of P ’s and the number of W ’s, there exists
a relation R correlating P and W with the appropriate converse. It remains
to show that there is some relation correlating Q and S with the appropriate
converse. Suppose there is some x such that R(o1, x) and some y such that
R(y, o2). Apply (A17) to define a relation just like R except it holds between
o1 and o2 and between y and x. This new relation is the needed correlating
relation between Q and S.

Now suppose no such x or y exists. Apply (A18) to construct a new relation
just like R except it holds between o1 and o2. If x exists but not y, apply (A19)
to drop the relation between o1 and x and then (A18) to construct another
new relation that holds between o1 and o2. If y exists and x does not, apply
(A19) and (A18) in the same way. In each case, the final relation is the needed
correlating relation between Q and S.

Now suppose R(b, a) and R(c, a), for different choices of a, b, c. The proof is
analogous.

Theorem 6: ∀x(∃y#y = x→ (¬x = 0→ ∃z _1,3 (z, x, s) = T ))

Proof. Assume there exists a b such that a = #b and a 6= 0. Since a 6= 0,
b is nonempty. So, apply (A20) to a property with extension b, resulting in a
property with some extension c holding of all and only elements of b except some
particular element. It remains to show ∃x(x = #c). Simply use the identity
relation as the needed single-valued relation to complete the proof.

Note that we have not established that the successor of any number is dis-
tinct from that number. It certainly isn’t. Consider a bijection between the
set of all natural numbers except for 0 and the set of all natural numbers. We
will be able to establish this about the successor relation applied to the natural
numbers themselves, however. A contemporary mathematician may prefer a
different definition of the successor relation.

One advantage of Frege’s approach is that we are explicitly establishing the
relation between the natural numbers and properties, in accordance with the
philosophical thesis that a statement of number contains an assertion about a
property.

Frege next turns to the task of defining the relation “one object follows after
an object in a series”. We’ll first define a relation R7 and then the function ?:

(A21) ∀x, y, z(R7(x, y, z) ↔ (∃W (z = pw, vqW (w, v)) ∧ (∀V ((∀v1(V (v1) →
∀v2(_1,3 (v1, v2, z) = T → V (v2)))) → ((∀v3(_1,3 (x, v3, z) = T →
V (v3)))→ V (y)))))
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This relation holds of x, y, z exactly if z is the extension of a binary relation
W and for any property V , if whenever V holds of v1 it follows that any
v2 that v1 bears W to also has property V , then if for any v3 such that
x bears W with v3, v3 has property V , then y has property V . That is,
y follows x in the z-series. In effect, this relation holds whenever from
any property being transmitted down the z-series and x being such that
bearing the relation to an object implies that object has that property, it
follows that y has that property.

(A22) ∀x(?(x) = py, zqR7(y, z, x))

So, _1,3 (x, y, ?z) = T implies y follows x in the z-series.
Frege points out that _1,3 (x, y, ?z) = T ∨x = y implies that either y follows

x in the z-series or x = y. Frege calls this y belonging to the z-series starting
with x or x belonging to the z-series ending with y (depending on whether x or
y is held fixed). Frege uses this to define another function similar to ?, which
we’ll define with R8 and †:29

(A23) ∀x, y, z(R8(x, y, z)↔ (_1,3 (x, y, ?z) = T ∨ x = y))

(A24*) ∀x(†(x) = py, zqR8(y, z, x))

Frege says n is a finite cardinal number (natural number) if n belongs to the
cardinal number series starting with 0. As is well-known, this property is not
definable in first-order logic. Let’s define this property explicitly:

(D3) ∀x(N(x)↔ R8(0, x, s))

Frege ends the section with another theorem stated without proof. The
theorem states that if n belongs to the series beginning with 0 defined by the
successor relation, then the number of P ’s, where P is the property of belonging
to the s-series ending with n, is the successor of n.30 I will sketch a proof below.

Let’s first establish that 0 doesn’t follow anything in the successor series.
To do so, I’ll define the property P0 of being a cardinal number containing a
non-empty extension. I’ll then establish that if y is the successor of x and y 6= x,
then the number of the property of belonging to the s-series ending with y is
the successor of the number of the property of belonging to the s-series ending
with x. To do this, I’ll define the relation R9 holding between z and w if z is
the number of a property holding of less objects than some property that w is
the number of (“less” here in the sense characterized by equinumerosity).

I’ll also define the relation R10 holding between x and y if y has a predecessor
belonging to the s-series beginning with x. This will be used in the proof of
Lemma 2.

29For our purposes the † function is unnecessary since Frege always uses it in a way that
could be replaced by our R8.

30Compare a popular set-theoretic definition of the natural numbers: 0 is the empty set and
any n > 0 is the set {0, .., n− 1}.
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To prove the theorem, I’ll define the property P1 of being an x such that x’s
successor is identical to the number of the property of belonging to the s-series
ending with x. Other properties and relations besides these four could have
been chosen as well.

(A25) ∀x(P0(x)↔ (∃z∃y((#z = x) ∧ (y _ z = T ))))

(A26) ∀x∀y(R9(x, y) ↔ ∃P∃Q(x = #pzqP (z) ∧ y = #pzqQ(z) ∧ ∀V ((w =
pv, zqV (v, z) ∧ I(w))→ ∃v(Q(v) ∧ ∀z(V (v, z)→ ¬P (z))))))

This relation holds if x is the number of some property and y is the number
of some property such that for any single-valued binary relation there is
some instance of y’s property that doesn’t bear the relation to an instance
of x’s property.

(A27) ∀x∀y(R10(x, y)↔ ∃z(_1,3 (z, y, s) ∧R7(x, z, s)))

This relation holds between x and y if y has a predecessor that belongs to
the s-series beginning with x.

(A28) ∀x(P1(x)↔ ∃y(_1,3 (x, y, s) = T ∧ y = #(pzqR7(z, x, s))))

Lemma 1: ∀x _1,3 (x, 0, ?s) 6= T

Proof. P0 is transmitted across the s-series, since the successor of any number is
the number of some property instantiated by one additional object. In particular
P0 holds of the successor of x, if it exists. But ¬P0(0). This completes the sketch.

Lemma 2: ∀x∀y((_1,3 (x, y, s) = T∧x 6= y)→_1,3 (#(pzqR8(z, x, s)),#(pzqR8(z, y, s)), s) =
T )

Proof. Suppose y is the successor of x and y 6= x. It remains to show that the
property of being an element of the s-series ending with x holds of all but one
instance of the property of being an element of the s-series ending with y, and in
particular that adding x’s successor y to the series adds one additional element.

Consider the property “following x in the s-series”. This property is trans-
mitted down the s-series and also holds of y’s successor, but it does not hold
of x. It does not hold of x because one can restrict the relation R9(z, w) to a
property by letting z = x, and this property transmits down the s-series and
holds of y but it does not hold of x. Hence y is not an element of pzqR8(z, x, s).

If z is a member of the s-series ending with x, then z is also a member of
the s-series ending with y (any transmitting property will transmit from x to
y). Suppose z 6= y and z is a member of the s-series ending with y.

If z = x then trivially z is a member of the s-series ending with x, so suppose
z 6= x. But then if z transmits properties across the s-series to y, then z must
also transmit properties to y’s predecessor x, since y has a unique predecessor
by Theorem 5. To see this, note that the property of having a predecessor that
belongs to the s-series beginning with z is transmitted across the s-series and
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holds of the successor of z (restrict R10 to define this property). However, if
x does not belong to the s-series beginning with z, then this property doesn’t
hold of y. Hence z is a member of the s-series ending with x. This completes
the proof.

Theorem 7: ∀n(_1,3 (0, n, †s) = T → (_1,3 (n,#(pxqR8(x, n, s)), s) = T ))

Proof. Assume _1,3 (0, n, †s) = T . So n belongs to the series beginning with 0
defined by the successor relation. We need to show that the number of P ’s, where
P is the property “belonging to the s-series ending with n”, is the successor of
n.

Note that the property of being a cardinal number, which we defined above
via the predicate symbol C (A14), is transmitted across the s-series. Therefore
n is a cardinal number.

Suppose n = 0. Then n belongs to the series beginning and ending with 0 de-
fined by the successor relation. But pxqR8(x, n, s) only contains 0 by Lemma 1.
Use (A17) to modify the identity relation and establish equinumerosity with C1,
establishing that #(pxqR8(x, n, s)) = 1. The result then follows from Theorem
1.

Suppose n 6= 0. P1(1) given Lemma 2 and that #(pxqR8(x, 0, s)) = 1, as we
have just shown. It suffices to show that P1 is transmitted across the s-series.
Suppose x has P1. Then the successor of x is the number of the property Q1

of belonging to the s-series ending with x. Call the successor y, and call y’s
successor z. If x = y then the result is trivial since then y = z as well, hence
assume x 6= y. By Lemma 2, z = #(pwqR8(w, y, s)). This completes the proof.

We have thereby characterized the natural numbers as the numbers of par-
ticular properties.

5.4.2 Proving the Dedekind-Peano Axioms

To prove the Dedekind-Peano axioms, we will add an additional closure principle
(A29) to our system such that for any property P there exists a property Q
that holds of an object exactly if either that object has P or that object is
not a natural number. The Dedekind-Peano Axioms are then straightforward
consequences of our earlier results.

(A29) ∀P∃Q∀x(Q(x)↔ (P (x) ∨ ¬R8(0, x, s)))

(DP1) For every natural number n, the successor of n is a natural number.

Proof. Since we defined natural numbers n as objects belonging to the s-series
beginning with 0, for for any n > 0 and any property transmitted across the
s-series that is also held by 1, n must have that property. But this property
transmits across the s-series, so the successor of n also has this property. Hence
the successor of n is also an element of the s-series beginning with 0.
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The existence of a successor is a consequence of Theorem 7.

(DP2) For all natural numbers n and m, n = m if and only if the successor of
n = the successor of m.

Proof. Immediate consequence of Theorem 5.

(DP3) 0 does not have a predecessor.

Proof. Suppose 0 has a predecessor p. Then there is some property P such that
p is the number of P ’s except some particular object and 0 is the number of
P ’s. But if 0 is the number of P ’s, then no object has P , since there could be
no relation that correlates a property held by some object with C0.

(DP4) If P is a property such that P (0) and for every natural number n, P (n)
implies P holds of the successor of n, then P (n) is true for every natural
number n.

Proof. Recall the natural numbers are defined as the objects belonging to the
s-series beginning with 0. If P transmitted across every s-series the proof would
be trivial, but we can only assume that P transmits across this particular s-
series.

Instead, we will use our closure axiom (A29) to define a new property Q
such that Q(x)↔ (P (x)∨¬R8(0, x, s)). That is, Q holds of an object iff either
that object has P or that object is not a natural number. Q(1) since P (1) since
P (0).

Suppose Q(b). Then either P (b) or b is not a natural number. If b is a natural
number, then its successor c has P as well by assumption. If b is not a natural
number, then if it has a successor c, c is not a natural number either. This is
because if c were a natural number, then it would either be 0 or its predecessor
would also be a natural number (this follows analogously to our proof of Lemma
2: the property of having a predecessor belonging to the s-series beginning with
0 transmits down the s-series and holds of 1). But c can’t be 0 because then b
couldn’t exist. Hence Q(c).

Hence Q is transmitted across every s-series. But then every natural number
has Q, given Q(1). Hence every natural number has P .

5.5 The Consistency of our Formal Theory of Arithmetic

We will follow the standard procedure of exhibiting a model of our axioms.
However, we will not use ZFC to construct this model, since our system violates
the axiom of foundation (any value-range provides a counterexample). Hence,
we will use another set theory to construct our model.
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I have chosen to use the set theory generated from removing the Axiom of
Foundation from ZFC and replacing it by the Anti-Foundation Axiom of Peter
Aczel (1988):

(AFA) Every accessible pointed directed graph corresponds to a unique set.

Call our theory FA.

Theorem 8: FA is consistent.

Proof. As described above, we will define an accessible pointed directed graph
piece-by-piece in order to prove the existence of a model M of the axioms of
FA. The needed interpretation function A will become clear as we proceed.
I will focus on the definitions of the domain of objects O and the domain of
functions G. I identify any element of G with its value-range. Hence, G is a
subset of O and ◦ is the identity function from G to O.

O will contain two additional elements T and F , where F is the empty set
{} and T is the Quine atom T = {T}. Hence, with respect to our graph, F is
the unique node with no edges leading from it and T is the unique node with a
single edge leading from it to itself. All elements of G and all other elements of
O will be sets of ordered pairs.

I will describe a construction procedure for building each element of G piece-
by-piece, which will correspond to adding nodes and directed edges to our graph.
This construction procedure is in-principle recursive, consisting of finitely many
applications of distinct sets of countably many steps. Since every function is
defined over every element of the domain, each time we introduce a new function
we will need to add the appropriate ordered pairs to each function that has
already been defined. We will also need to respect our various closure principles.
When I speak of “adding an ordered pair to a set”, what I mean with respect
to our graph is that we should add an edge from that set to that ordered pair.

Each needed ordered pair (a, b) corresponds to a node in our graph with
two edges leading to nodes {a} and {a, b}, the first of which has a single edge
leading to node a and the second of which has two edges leading to node a and
node b, respectively. Let’s define an ordered triple (a, b, c) as the ordered pair
((a, b), c) and an ordered quadruple (a, b, c, d) as the ordered pair ((a, b, c), d).
Each element of G will correspond to a node with edges leading to each ordered
pair contained within that element.

Our first element of G is the identity relation =, which will consist of a set
of ordered pairs, each of whose first component is an ordered pair and second
component is either T or F . There will be one first component corresponding
to every combination of elements of O. For each such first component (a, b), the
second component will be T if a = b and F otherwise. Since = has an extension
(itself), we will begin the construction of = by adding the three ordered pairs
((=,=), T ), ((T, T ), T ), and ((F, F ), T ) to =, followed by adding every other
combination of pairs of elements of the domain as first components with second
component F (e.g. ((T, F ), F )).
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We will close our domain G under the operations defined in axioms (L1)
and (L2) of our derivation system. This will force our model to have an infinite
domain and will thereby force all elements of G to themselves be infinite sets.
Currently, G contains the single element =. Since = is a binary relation, (L2)
implies the existence of three properties given the current state of our domain O:
“being identical to T”, “being identical to F”, and “being identical to =”. Each
property, being identical to its own extension, will require the addition of the
obvious additional ordered pairs to =. Given (L2), this implies the existence
of another three properties corresponding to being identical to each of those
extensions. This will require adding the needed ordered pairs to =, resulting in
new properties, etc.

Let’s next add the function ı to G. Recall that ı maps each element of
O that is an extension with a unique element contained in O to that unique
element and maps any other element of O to itself. Hence, for each property
that we just defined via (L2) and =, ı will contain an ordered pair consisting of
that property and the unique element of its extension. For every other element
of O, ı will contain an ordered pair consisting of that element and itself. As
usual, we must now add the ordered pair ((ı, ı), T ) to =, followed by adding
ordered pairs corresponding to every other combination of elements of O with ı.
Furthermore, we must add the ordered pair (ı, F ) to each property defined via
(L2) and =. Finally, (L2) and = imply the existence of an additional property
“being identical to ı” with its own extension, which forces the addition of the
needed ordered pairs to each element of G, followed by adding a new property
of being identical to that extension, etc.

(L3) is immediate from our definitions of T and F .
Basic Law V, which has been split into axioms (V a) and (V b), is trivially

true in our model. This is because we have identified every function with its
value-range.

Axiom (V I) is a straightforward consequence of our definition of ı.
We can now move to our arithmetical axioms (A1) - (A29). I will describe

the relation R0 defined by (A1) in detail in order to give the reader a general
idea of the approach.

(A1) defines the three-place relation R0, where R0 holds of x, y, and z if
y is the value-range of a function that maps x to z or y is the extension of a
property that x has and z = T (i.e. the output of that property on input x). So,
for example, the extension e of the property “being identical to T” is such that
((T, e, T ), T ) is an element of R0, since T has this property. For any elements x
of O other than T and any elements y of O, ((x, e, y), F ) is an element of R0.

Hence, we must add the appropriate ordered pairs to R0 corresponding to
the extensions of the properties we defined via (L2) and =, in addition to
ordered pairs corresponding to ı applied to each element of O (e.g. ((T, ı, T ), T )).
These will be the current ordered pairs with second component T . All other
ordered pairs will consist of an ordered triple as first component and F as second
component, where the ordered triples are every combination of elements of O
that did not already appear in the previous step. Add ordered pairs whose first
component includes the extension of R0 itself as a component in the obvious
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way.
Given (L2), we will close G under restrictions of R0 via holding one of its

three arguments fixed at any element of O, and furthermore we must close G
under the restriction of any binary relation resulting from restricting R0. As
usual, we must then allow = to be restricted by the extensions of any of these
properties or relations, which will result in the definitions of new properties, etc.
Furthermore, we must add the appropriate ordered pairs to every element of G.
One could of course define this procedure as a single countable list of steps.

(A2) defines a two-place function _ based upon R0. a _ b = c if either b is
the value-range of a one-place function mapping a to c or b is not the value-range
of a one-place function and c is the empty extension (the set of all ordered pairs
consisting of an element of O as first component and F as second component).
Since we have identified functions with their value-ranges and hence properties
are not distinguished from functions in general, if b is the extension of a property
that a does not have then c will be F . This is not true in the general case (c
could be the empty extension in other models).31

So, we must simply add the needed ordered pairs to _, close G under the
closure operations defined above (including (L1), since _ is a two-place func-
tion), and add the new ordered pairs to each element of G. This is another
example of countably many required steps.

(A3) and (A4) are analogous to (A1) and (A2), meant to introduce the
function _1,3 (grounded on R1) mapping x, y, and z to w if w is the output of
a two-place function with extension z to inputs x and y.

(A5) introduces a property I holding of the extensions of binary relations
if they are single-valued, i.e. R(x, y) and R(x, z) implies y = z. Our current
binary relations include the identity relation, which is single-valued, and various
restrictions of R0 and R1. So, we must add the appropriate ordered pairs to
I, close G under the appropriate closure operations, and add the appropriate
ordered pairs to all elements of G.

The general strategy should now be clear. The reader is welcome to check
the cases that I do not explicitly discuss here. There are six remaining closure
principles:

(A8) introduces a new closure principle, requiring G to contain the converse
of any binary relation in G.

(A17) - (A19) introduce additional closure principles that will need to be
respected, closing bijective binary relations under exchange of a pair of elements

31It is worth noting that, as Quine pointed out in (1954, pg. 155), there is a contradiction
lurking nearby. Consider the formula x _ x = y. One might think that this formula defines
a relation between x and y. Call this relation R(x, y). Now restrict R at second argument
with F , resulting in the property R(x, F ). This property seems to hold of objects exactly if
those objects are either extensions which are not elements of themselves or are value-ranges
of functions mapping their own value-ranges to F . Let the extension of this property be e.
Now consider the sentence e _ e = T . If e is an element of itself, then e cannot be an element
of itself, and if e is not an element of itself, then e must be an element of itself. Hence, we
cannot allow the definition of such a relation without an explicit definition statement. It is
also worth noting that given our semantics, pxqx _ x = F ignores the function symbol _
and instead refers to the extension of the property “being identical to F”.
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with each other (i.e. from R(a, b) and R(c, d) to R∗(a, d) and R∗(b, c)), removal
of a pair of elements from the relation, and addition of a pair of elements to the
relation. (A20) closes the domain of nonempty properties under the existence
of properties holding of one less element.

(A29) closes the domain of properties P under the existence of properties Q
such that Q holds of an object exactly if either that object has P or that object
is not a natural number.

This sketch of an in-principle recursive procedure results in the construction
of an accessible pointed directed graph with countably many nodes and edges.
The corresponding set is our needed model M = (O,G,A, ◦) of FA. Hence,
FA is consistent.
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