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Abstract

In a recent article (Stalnaker, 2009), Robert Stalnaker presented a general counterex-

ample to several popular accounts of iterated belief revision, including Ranking Theory.

In this paper, I will argue that Stalnaker’s counterexample fails as a counterexample to

the standard Ranking-Theoretic account of iterated revision. In particular, I will argue

that his counterexample cannot be expressed in a Ranking-Theoretic framework, and the

most plausible modifications to his counterexample that allow it to be expressed in such

a framework either do not result in the counterintuitive conclusion as Stalnaker claims or

do result in this conclusion, but it is no longer counterintuitive. I will begin this paper

with a brief introduction to AGM Belief Revision, followed by an introduction to Ranking

Theory as motivated by problems in the AGM framework. I will then discuss a recent

paper (Hild and Spohn, 2008) which attempts to give an operational definition of ranks in

terms of iterated contraction functions via measurement theory. I will end with discussion

of the Stalnaker counterexample.



Contents

1 A Brief Introduction to AGM Belief Revision 2

2 Trouble in Paradise 7

3 Ranking Theory 10

4 Stalnaker’s Counterexample 16

1



1 A Brief Introduction to AGM Belief Revision

AGM Belief Revision gives us an account of rational constraints on changes in non-

quantitative states of belief, states which include belief, disbelief, and suspension of judg-

ment.1 We’ll begin our discussion by assuming that an agent’s belief set B can be repre-

sented by a set of propositions in some Boolean Algebra A of subsets of a nonempty set

of possibilities W.2 So, beliefs are represented by their contents, contents are propositions,

and propositions are represented by the set of possibilities in which they are true. These

are all controversial assumptions, but they are not the subject of this paper. Throughout

this paper, I will unabashedly call elements of A propositions.

Belief sets will be formally defined as follows: Let A be a Boolean Algebra over W.

Then B is a belief set iff B is a subset of A such that W ∈ B; ∅ /∈ B; if B′ ⊆ B then

∩B′ ∈ B; and if A ∈ B and A ⊆ B, then B ∈ B. So, B contains the tautology, does not

contain the contradiction, and is closed under both arbitrary intersection (conjunction)

and the superset relation (logical consequence). For simplicity, we’re assuming that belief

sets are closed under arbitrary rather than finite intersection. That way, we can refer to

what Wolfgang Spohn (unpublished) calls the core C of a belief set, where for any A ∈ A,

A ∈ B exactly if C ⊆ A. C is simply the set of all possibilities that are consistent with

what the agent believes.

Let’s proceed to the dynamics of belief. Now, in the case where the agent receives

new information that is consistent with what the agent believes (in our propositional

framework, the agent receives information (with propositional content) A such that C∩A

is nonempty, where C is the agent’s prior core), there is a standard account of what the

1As is standard, I will treat disbelief in a proposition as equivalent to belief in its negation. I assume

that the reader has some familiarity with the standard AGM model of Belief Revision, as presented in

(Gärdenfors, 1988). This section will only contain a brief summary of AGM Belief Revision, at the level

of propositions rather than sentences and within a Ranking-Theoretic framework, following Wolfgang

Spohn (unpublished). The purpose of this section is to provide motivation for Ranking Theory.
2W can be, for example, the set of outcomes of a single toss of a six-sided die or even the set of all

possible worlds. Throughout, I will implicitly assume that certain subsets of W are in fact elements of

the algebra A. For an explicit account of the needed constraints on A, see (Spohn, unpublished).
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result of the agent’s updating her beliefs ought to be; namely, the agent’s posterior belief

core C ′ is the intersection of the agent’s prior belief core C and the (propositional content

of the) new information A. Thus, after updating, the agent believes that D exactly if

C ∩ A is a subset of D. So, after updating, the agent’s posterior belief set B′ consists of

all of her prior beliefs, the new belief that A, and all beliefs resulting from closure under

conjunction and logical consequence after A is added to her prior belief set B. This is

known as expansion in the AGM framework.3

But what if the agent receives new information A that is inconsistent with what the

agent believes? Here are two obvious constraints that one could put on updating an agent’s

belief set in light of such information: The posterior core C ′ should be nonempty (after

updating, there should be some possibility that is consistent with what the agent believes)

and C ′ should be a subset of A (A should be believed after updating). Furthermore, one

might consider generalizing our constraints on expansion in the following way: if, after

updating on information A, some proposition B is consistent with what the agent now

believes (C ′ ∩ B 6= ∅), then if the agent had updated on A ∧ B instead of simply A, the

resulting core C ′′ should have been exactly C ′ ∩ B, regardless of whether or not A itself

was consistent with what the agent previously believed. Here is the motivation: If B is

in fact consistent with the agent’s beliefs after updating on A alone, then updating on A

and then B should be the same as updating on A∧B all at once. Furthermore, given our

constraints on expansion, if B is consistent with C ′, then updating on B (after having

already updated on A) should result in a posterior core C ′′ = C ′∩B. If we combine these

constraints, we get what I will call a Propostional AGM Revision Function ∗, which is

defined relative to an agent’s prior belief set and maps propositions (representing the new

information) to posterior belief cores. In particular, the agent’s prior belief core will be

identical to ∗(W ), the result of “learning” the tautological proposition W (i.e. vacuous

expansion).4

3C is of course contracted, since by expanding her beliefs the agent contracts the set of possibilities

consistent with what she believes.
4Spohn (1988) originally called such functions simple selection functions. Following Spohn, I have

made two simplifying assumptions above that distinguish such functions from standard AGM revision
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Definition. Let A be a Boolean Algebra over W. Then ∗ is a Propositional AGM Revision

Function exactly if ∗ is a function from A− {∅} into A such that for all A,B ∈ A− {∅}:

(a) ∅ 6= ∗(A) ⊆ A,

(b) if ∗(A) ∩B 6= ∅, then ∗(A ∩B) = ∗(A) ∩B.

Now we can state what Spohn calls the law of simple conditionalization: if the pro-

postional AGM revision function ∗ characterizes the doxastic state of the agent s at time

t and if A is the (propositional content of the) total information s receives and accepts

between t and t′, then ∗(A) is s′s belief core at t′, so that s believes that D at t′ exactly

if ∗(A) ⊆ D.

There is an equivalent way of representing revision functions that will help elucidate

the amount of structure these constraints impose on the agent’s doxastic state at some

time t. A revision function ∗ corresponds precisely to a transitive and complete weak

well-ordering (WWO) � of the set of possibilities W. Importantly, although every non-

empty proposition A of A has a minimum with respect to �, since � is not necessarily

antisymmetric, there may be more than one �-minimal possibility in A. Now, given a

WWO �, one can construct a unique revision function ∗ by setting ∗(A) equal to the set of

all �-minimal possibilities in A for each A ∈ A. Similarly, given a revision function ∗, one

can construct a unique WWO � by letting ∗(W ) = C0 be the�-minimal possibilities in W,

∗(W−C0) = C1 be the �-minimal possibilities in (W−min�(W )) = W1 (i.e., the second-

most minimal possibilities in W ), ∗(W − (C0 ∪ C1)) = C2 be the �-minimal possibilities

in (W−(min�(W ) ∪min�(W1))) = W2 (i.e., the third-most minimal possibilities in W ),

etc.5 One can also use these definitions to recover the original � or ∗.
functions: all belief sets are consistent, and agents cannot update on information which is itself contra-

dictory. More importantly, AGM revision functions are standardly defined as functions from any belief

set and information A to a posterior belief set, while I have followed Spohn in defining a revision function

relative to a particular belief set. In this way, one can think of a revision function as characterizing the

doxastic state of the agent at some particular time t without assuming that the agent will continue to

revise her beliefs (or has always revised her beliefs) according to this revision function. In fact, we will

soon see that there are reasons for rejecting these assumptions.
5I’m ommitting the full definition via transfinite recursion. See (Spohn, 1988) or (Spohn, unpublished)
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Intuitively, a revision function ∗ corresponds to an ordering of disbelief � over the

possibilities in W, where the agent’s current belief core C0 = ∗(W ) consists of the pos-

sibilities not disbelieved at all, C1 = ∗(W − C0) (that is, the posterior core that would

result from the agent updating by the information that some of the her beliefs are false)

consists of the possibilities disbelieved the least, etc. So, when the agent receives new

information A that is inconsistent with what she believes, she revises her core to the

set of least-disbelieved possibilities that are consistent with A, that is, the �-minimal

possibilities in A.6

I will now define a Propositional AGM Contraction Function ÷ before describing

a serious shortcoming of the AGM framework, since contraction functions will become

very important later on. Unfortunately, contraction functions don’t fit as nicely into the

story as I have been telling it (in terms of updating beliefs in light of new information),

but intuitively they correspond to an agent’s suspending judgment regarding a formerly-

believed proposition A, so that after contraction by A, the agent neither believes A nor

believes Ā. The agent’s prior belief core C will be equal to ÷(∅); that is, C is equal to

the posterior core after the vacuous contraction of the contradictory proposition (which

wasn’t believed in the first place). Formally, these functions are defined as follows:

Definition. Let A be a Boolean Algebra over W. Then ÷ is a Propositional AGM Con-

traction Function exactly if ÷ is a function from A − {W} into A such that for all

A,B ∈ A− {W}:

(a) ∅ 6= ÷(∅) ⊆ ÷(A) ⊆ ÷(∅) ∪ Ā and ÷(A) * A,

(b) if ÷(A ∩B) * A, then ÷(A) ⊆ ÷(A ∩B) ⊆ ÷(A) ∪ ÷(B).

Condition (a) captures the intuition that, in order for the agent to give up her belief

that A, she must add Ā-possibilities to the set of possibilities consistent with what she

for details. This result is of course similar to the correspondence between standard AGM revision functions

and entrenchment orderings as defined in (Gärdenfors, 1988).
6In (Gärdenfors, 1988), an entrenchment ordering is not considered an ordering of disbelief, since all

elements of the agent’s belief set are maximally believed, but rather an ordering of “usefulness in inquiry

and deliberation”. Such differences, while very important, are not relevant for our purposes.
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believes, but she should not add any further A-possibilities (she shouldn’t give up belief

that D if D doesn’t even entail A, unless D ∧ Ā is no less implausible than D̄ ∧ Ā, and

hence the D-possibilities were only less implausible than the D̄-possibilities with respect

to A), nor should she remove possibilities (she shouldn’t gain new beliefs). Condition (b)

captures the intuition that, if after contracting by A ∧B the agent does not believe that

A, then contracting by A alone would have resulted in giving up no more beliefs than

contraction by A ∧B, which itself resulted in giving up no more beliefs than if the agent

had kept only the beliefs that would remain no matter whether she had contracted by A

alone or contracted by B alone. Contracting by B alone, however, may have resulted in

giving up more beliefs than contracting by A∧B, since B was not necessarily contracted

from the agent’s belief set when she gave up her belief in A ∧B.

Intuitively, when forced to contract her belief that A, the agent adds the least-

disbelieved Ā-possibilities to her core. Now, revision and contraction are interdefinable

via the following theorem:7

Theorem 1. Let A be a Boolean Algebra over W. If ∗ is a revision function for A, then

the function ÷ defined by ÷(A) = ∗(W )∪∗(Ā) is a contraction function for A, and one can

recover ∗ from ÷ via the definition ∗(A) = ÷(Ā) ∩ A. Furthermore, if ÷ is a contraction

function for A, then the function ∗ defined by ∗(A) = ÷(Ā) ∩A is a revision function for

A, and one can also recover ÷ from ∗ via the previous definition.
7This theorem can be found in (Spohn, unpublished), although it is merely the propositional variant of

a similar theorem in (Gärdenfors, 1988). The two identities are originally due to William Harper (1977)

and Isaac Levi (1977), respectively. Now, if someone rejected the Recovery Postulate (in our framework,

this is: if ÷(∅) ⊆ A, then ÷(A)∩A ⊆ ÷(∅), which follows from condition (a)), perhaps because he didn’t

think one should always refrain from adding A-possibilities to the posterior core when contracting by A,

he would no longer be compelled to consider contraction reducible to revision, although he may still be

happy to accept that revision is reducible to contraction and expansion (Recovery is unnecessary for that

half of the proof). Makinson (1987) has shown that, even if we reject Recovery, there will be a collection

of functions that satisfy the other axioms for contraction such that, via the Levi Identity, they all result in

the same revision function. Furthermore, there will be a unique such function that also satisfies Recovery,

namely, the function in the collection that contracts the least amount of beliefs from the agent’s belief

set. I will not defend Recovery here, but instead refer the reader to (Spohn, unpublished).
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2 Trouble in Paradise

This can’t be the end of the story, however. There is a serious problem with the law

of simple conditionalization as presented above: the prior doxastic state of the agent is

represented by a revision function, while the posterior doxastic state of the agent is merely

represented by a belief set. So far, we have given no account of how the agent revises

her beliefs more than once. To put the point another way, we have seen how, given an

ordering of disbelief, the agent revises her belief set to a new belief set in light of new

information, but we haven’t said anything about how the agent revises the ordering of

disbelief itself ! This is a variant of what is known in the literature as the Problem of

Iterated Belief Change.

Couldn’t we have defined revision functions more generally as applying to all belief

sets and input propositions at once, that is, as a function from both a belief set and a

proposition to another belief set, thus allowing the agent to continue revising her beliefs

using the same revision function with respect to her posterior belief set? Certainly, but

orderings of disbelief (and entrenchment orderings) correspond to particular belief sets,

and hence we have still placed basically no constraints on how the agent moves from one

ordering of disbelief to another ordering of disbelief. So far, we only have the trivial

constraints that the posterior ordering must be a transitive and complete weak well-

ordering and the agent’s posterior core must be precisely the minimal elements of this

new ordering, but this amounts to saying no more than the agent should still be updating

via a revision function and the agent’s posterior belief set should in fact be the agent’s

belief set when the agent updates again. At this point, almost anything goes.8

Do we have reasons for thinking that there ought to be additional constraints on

iterated belief revision? Adnan Darwiche and Judea Pearl (1997) give several examples of

8In fact, defining revision functions in this general way might be too restrictive as well, since the agent

would then be committed to always revising a particular belief set in a particular way. It isn’t obvious

that whenever the agent revises her beliefs and ends up with the same belief set she had at some previous

time, her dispositions to revise this belief set in light of any new information should now be identical to

what they were previously.
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AGM-compatible revision functions that license highly counterintuitive revision behavior

precisely because these functions allow for counterintuitive iterated revisions. I reproduce

one such example here:

“Example 1 We see a strange new animal X at a distance, and it appears to be barking

like a dog, so we conclude that X is not a bird, and that X does not fly. Still, in the event

that X turns out to be a bird, we are prepared to change our mind and conclude that

X flies. Observing the animal closely, we realize that it actually can fly. The question

now is whether we should retain our willingness to believe that X flies in case X turns

out to be a bird after all. We submit that it would be strange to give up this conditional

belief merely because we happened to observe that X can fly. Yet, we provide later an

AGM-compatible revision operator ◦ that permits such behavior.”

Now, let’s consider a couple of obvious attempts to determine exactly how the agent’s

ordering of disbelief should evolve when she revises by information A that was previously

inconsistent with what the agent believed, both mentioned in (Spohn, 1988). Perhaps

all of the A-possibilities should now be shifted in the ordering so that they are all before

all of the Ā-possibilities, with the ordering otherwise preserved. However, since Ā was

previously believed, this amounts to shifting all of the possibilities consistent with what

the agent previously believed so that they are now at least as disbelieved as the previously

most-disbelieved A-possibility. In many cases, this seems very counterintuitive. As Spohn

(1988) puts it, this amounts to accepting information A with maximum firmness and is

not suitable as a general model.

Perhaps only the �-minimal A-possibilities should be shifted to the beginning of the

ordering (as is forced by the revision axioms), while the rest of the ordering should remain

unchanged. However, this amounts to accepting A with minimum firmness, since if the

agent merely found out that at least one of her beliefs is false, she would immediately

give up her belief that A and return to her previous belief set. Additionally, neither this

proposal nor the previous proposal are reversible in the sense that there is no general way

of inferring the previous ordering of disbelief from the new ordering of disbelief, even if

we know what position the minimal A-possibilities occupied in the previous ordering.
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I’ll briefly explain why the first proposal is not reversible, since the reason for this

is very illustrative of what the Ranking Theorist sees as a general problem with the

account given so far (and with many other attempts in the literature to fix it). We

can think of the ordering � as a well-ordered partition of the possibilities in W, where

each element of the partition is a set of possibilities that are all in the same position

in the ordering. The partition can be written as follows: C0, C1, C2, . . . , Cn, . . . , where

C0 is the agent’s core, C1 is the set of possibilities disbelieved the least, C2 is the set

of possibilities disbelieved the second-least, etc. Now, assume that the least-disbelieved

A-possibilities are in Cn and (for simplicity) there exist most-disbelieved A-possibilities

that are in Cn+m. So, the first proposal amounts to shifting to the following partition:

Cn ∩ A, . . . , Cn+m ∩ A,C0, C1, . . . , Cn−1, Cn ∩ Ā, . . . , Cn+m ∩ Ā, Cn+m+1, . . . . However,

empty terms must be removed in order for this partition to correspond to an ordering.

For example, if there are no A-possibilities in Cn+3, then Cn+3 ∩ A will be empty and

its position as the set of third-least disbelieved possibilities will instead be occupied by

Cn+4 ∩ A. So, after the agent updates on new information A, even if we know the value

of n, there is no general way of inferring exactly what the agent’s previous ordering of

disbelief was, since some information about relative positions in the ordering is lost.

Wolfgang Spohn (1988) claims that these examples demonstrate what must be done

in order to make progress on the problem of iterated belief change: we must specify the

firmness with which the agent incorporated new information into the new state, and we

must not delete empty terms from the agent’s well-ordered partition.9 Hence, rather than

merely characterizing the agent’s doxastic state at some time t as an ordering of disbelief,

we should characterize it as a ranking of disbelief, where certain arithmetical properties
9Why should we care about reversibility? Spohn (unpublished) defends reversibility as follows: if

Wolfgang asserts E and shortly thereafter apologizes and takes E back, W may simply not be rich

enough to appropriately express the content of the beliefs that “Wolfgang asserts E” and “Wolfgang says,

“Sorry, I was wrong about E”” as propositions in the algebra. Hence, if W is not rich enough, the second

revision is perhaps best thought of as undoing the first revision. For similar reasons, it may be best to

consider the first revision as a revision by E with some firmness n, where n corresponds to something

like Wolfgang’s perceived trustworthiness, rather than a revision by “Wolfgang asserts E”.
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of the ranks are meaningful. In particular, if some possibility is disbelieved with rank 3

and another possibility is disbelieved with rank 5, then the difference of 2 matters, even

if there are no possibilities disbelieved with rank 4. With this motivation in mind, we

finally turn to Ranking Theory.

3 Ranking Theory

A ranking function assigns a natural number or ∞ to every possibility in W, where the

natural numbers are meant to represent the agent’s rank of disbelief in that possibility.

So, for each n, κ−1(n) corresponds to the (possibly empty) set of possibilities disbelieved

with rank n. More formally, κ is a ranking function for A iff κ is a function from W into

N+ = N ∪ {∞} such that κ−1(0) 6= ∅. Now, we extend ranks to propositions by defining

κ(∅) =∞ and κ(A) = min{κ(w)|w ∈ A} for each non-empty A ∈ A.

κ−1(0) is of course the agent’s core, and hence requiring that this set be nonempty

amounts to requiring that there is at least one possibility consistent with what the agent

believes. The definition of the rank of a proposition is motivated by the idea that the

agent’s degree of disbelief in a proposition A should be precisely her degree of disbelief in

what she considers to be the least implausible possibilities in which A is true. Now, the

agent believes that A exactly if the ranking function characterizing the agent’s doxastic

state is such that κ(Ā) > 0. If κ(A) = κ(Ā) = 0 then the agent suspends judgment

regarding A. One can then define the belief set associated with a negative ranking function

κ, B(κ), as the set of all propositions A ∈ A such that κ(Ā) > 0.

One can easily show that for any A ∈ A, either κ(A) = 0 or κ(Ā) = 0 or both. The

motivation should be clear: either the agent does not disbelieve that A or the agent does

not disbelieve that Ā or both, for otherwise the agent would both believe that A and

believe that Ā. Also, for any A,B ∈ A, κ(A ∪B) = min{κ(A), κ(B)}. In fact, this result

holds for arbitrary (rather than merely finite) union.

One of the central definitions in Ranking Theory is the definition of the conditional

rank : the rank of B under the supposition that A. Here are two considerations that
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motivate the definition: Ā should be maximally disbelieved under the supposition that

A (κ(Ā|A) =∞), and the ordering of possibilities within A should not change under the

supposition that A. So, let κ be a ranking function for A and A ∈ A such that κ(A) <∞.

Then for any w ∈W the conditional rank of w given A is defined as

κ(w|A) =

 κ(w)− κ(A), if w ∈ A

∞, if w ∈ Ā

 .

We then extend this definition to propositions in the obvious way, namely, by defining

κ(B|A) = min{κ(w|A)|w ∈ B} when B is nonempty and κ(∅|A) =∞. As a consequence

of this definition, if κ(A) <∞, then κ(B|A) = κ(A ∩B)− κ(A).

Now we can define the conditionalization of a ranking function κ by some proposition

A with firmness n ∈ N+ (where κ(A), κ(Ā) <∞) as follows:

κA→n(w) =

 κ(w|A), if w ∈ A

κ(w|Ā) + n, if w ∈ Ā

 .

The idea is that an agent incorporates new information into her doxastic state with

varying degrees of firmness (thus the parameter n) and, after updating on A, the agent’s

ordering of disbelief within A and within Ā should remain the same, even though the ranks

of disbelief will change and the ordering of A-possibilities and Ā-possibilities will shift

relative to each other.10 For example, if the agent believes that Ā and then conditionalizes

on A with firmness n > 0, all the A-possibilities will shift downward so that the minimal

A-possibilities are now ranked 0 and in general the A-possibilities will shift from κ(w)

to κ(w) − κ(A). Furthermore, in this case the Ā-possibilities will shift upward so that

κA→n(Ā) = n and in general the Ā-possibilities will shift from κ(w) to κ(w)+n. So, after

conditionalization, the agent will believe that A and will disbelieve that Ā with rank n.

Now we can state a dynamic law of conditionalization for ranking functions: If the

prior doxastic state of the subject s at time t is characterized by the ranking function κ

10Darwiche and Pearl (1997) also recommended that the ordering within A and within Ā should not

change when revising by A, and this seems to be generally accepted in the AGM literature on the problem

of iterated belief change.
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and if s receives and accepts information (with propositional content) A with firmness n

between t and t′, then the posterior doxastic state of s at t′ is characterized by the A→ n

conditionalization of κ, κA→n.

Since both prior and posterior doxastic state are represented by ranking functions, this

law of conditionalization is iterable. As should be clear, if the agent does not believe that

A, then conditionalization by A with firmness n > 0 corresponds to AGM revision by A.

In particular, the agent’s posterior belief set will be the same no matter which n > 0 is

chosen. Now, if the agent does believe that A, then conditionalization by A with firmness

n = 0 corresponds to AGM contraction by A. In particular, after conditionalization

κA→0(A) = κA→0(Ā) = 0. Notice that since n must be 0 for contraction to occur, the

agent’s posterior doxastic state depends only on the proposition being contracted from

the agent’s belief set.11

Now, there is much more about Ranking Theory that is worth discussing, not the least

of which is how it compares to a standard Bayesian probabilistic framework with respect

to such topics as confirmation, independence, decision-making, etc., but such discussion

lies beyond the intended scope of this paper.12 Instead, let’s consider a potential problem

for Ranking Theory. I claimed above that differences between ranks are meaningful, so

that if some possibilities are assigned a rank of 3 and others are assigned a rank of 4,

this corresponds to a doxastic state that is different from the state in which the latter

possibilities are assigned a rank of 5 instead, even if in this second state there are no

possibilities assigned a rank of 4. However, I gave no indication of what such differences

correspond to, nor how to measure such differences. To put the point another way, I
11If the agent believes that A, then κ(Ā) = m for some m > 0, and A → n conditionalization with

n > 0 will result in no change to the agent’s belief set, but the ranks of the Ā-possibilities will increase

if n > m (the information increased the agent’s disbelief in certain propositions), decrease if n < m (the

information decreased the agent’s disbelief in certain propositions), and remain the same if n = m. If the

agent does not believe that A, then κ(Ā) = 0, and A→ 0 conditionalization will result in κA→0(A) = 0,

so if κ(A) > 0 then A→ 0 conditionalization will in fact result in contraction of the agent’s belief that Ā.

So, A→ 0 conditionalization is only AGM contraction by A if κ(A) = 0, and in order to properly define

the contraction κ÷A of κ let’s stipulate that κ÷A = κ if κ(Ā) = 0.
12Once again, I refer the interested reader to (Spohn, unpublished).
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gave no operational definition of ranks. It is one thing to claim that the agent considers

possibility w1 more implausible than possibility w2; it is quite another to claim that the

agent considers w1 to be implausible with rank 14 and w2 with rank 7, so w1 is ranked

exactly 7 higher than w2. Furthermore, given nothing but an agent’s belief set, one

can determine the agent’s entire ordering of disbelief by comparing the agent’s different

posterior belief sets under different hypothetical contractions, provided such contractions

satisfy the AGM constraints we discussed above. More carefully, in the AGM framework

B is at least as disbelieved as A exactly if either B is maximally disbelieved or after

contracting by Ā ∧ B̄ the agent does not believe that Ā (Gärdenfors, 1988). So, let’s

define �÷, the ordering generated by ÷, such that for all A,B ∈ A, A �÷ B iff either

B = ∅ or ÷(Ā ∩ B̄) * Ā.

What about the Ranking Theorist? Can the Ranking Theorist give an operational

definition of ranks in terms of nothing more than belief sets and hypothetical contractions?

According to Matthias Hild and Wolfgang Spohn (2008), the answer is yes. Hild and

Spohn have demonstrated that given an agent’s belief set, one can determine the agent’s

entire ranking function (up to multiplication by a constant) by comparing the agent’s

different posterior belief sets under different hypothetical iterated contractions (at most

three successive hypothetical contractions are needed in each case), provided such iterated

contractions satisfy six axioms given by Hild and Spohn.13 Hild and Spohn demonstrate

this by showing how one can use an iterated contraction function characterizing an agent’s

doxastic state (and satisfying their six axioms) to construct a difference comparison of

13In (Hild and Spohn, 2008), Hild and Spohn weaken the definition of a ranking function so that

the range of the function doesn’t have to be well-ordered. In particular, Hild and Spohn define ranking

functions as maps from propositions to nonnegative real numbers (rather than from possibilities to natural

numbers) and add the law of finite disjunction κ(A ∪ B) = min{κ(A), κ(B)} as part of the definition.

Hild and Spohn claim this weaker definition facilitates the connection with measurement theory, since

measurement scales usually consist of real numbers. I have chosen to stick with the stronger definition of

a ranking function in order to elucidate the motivation for Ranking Theory in terms of Belief Revision, as

well as to capture the structure of Ranking Theory in an intuitive way without unnecessary complication.

Additionally, if one uses the weaker definition, several other definitions will also have to be changed

accordingly. See (Hild and Spohn, 2008) for details.
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pairs of propositions in terms of relative implausibility (i.e., the difference in implausibility

between A and B is greater than the difference in implausibility between C and D). They

then use a theorem of Krantz, Luce, Suppes, and Tversky (1971) in order to prove the

existence of a ranking function that satisfies these difference comparisons and is unique

up to multiplication by a constant. Hence, iterated contraction functions satisfying their

six axioms provide a measurement of ranks on what is known as a ratio scale.

Now, Hild and Spohn admit that such difference comparisons are not intuitively well

accessible. However, (at most) three successive hypothetical contractions of a belief set are

much more accessible, and since one can construct the needed difference comparison from

such hypothetical iterated contractions (provided they satisfy the axioms), this seems to

answer the operationalist critic. Ranks correspond to dispositions to successively contract

one’s current belief set, when necessary, in accordance with certain axioms. As should

be clear, this measurement result is only as valuable as the independent plausibility of

the axioms it is based upon. In particular, we gave independent motivation above for the

constraints on an AGM contraction function, and hence the fact that one can construct an

ordering of disbelief uniquely via a belief set and hypothetical single AGM contractions

can be thought of as operationalist justification for our use of orderings of disbelief.14

Similarly, the six axioms for iterated contraction ought to have strong intuitive justifica-

tion. Let’s briefly consider the six axioms (modified to reflect our previous definitions)

and the justification provided by Hild and Spohn.

Let ÷ be a function from the set of all finite sequences of propositions from A− {W}

to the set of all belief sets made up of propositions from A and let ÷〈S〉 be the function

assigning the value ÷〈S, S′〉 to each finite sequence S′ of propositions from A − {W}.
14Alternatively, if one finds orderings of disbelief intuitively accessible, one could think of such order-

ings of disbelief as justifying the AGM axioms for contraction, since one can construct a unique AGM

contraction function from such an ordering. This move doesn’t seem available to the Ranking Theorist,

however, since as I claimed above, it is difficult to see what ranks of disbelief are supposed to be at an

intuitive level besides simply positions in an ordering of disbelief. So, one would need strong independent

justification of the full Ranking-Theoretic doxastic structure in order to justify the proposed axioms of

iterated contraction in this way.
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Then ÷ is an iterated contraction function exactly if for any A,B,C ∈ A−{W} and any

finite sequence S of propositions from A− {W}:

(IC1) the function A 7→ ∩(÷〈A〉) (where ∩(÷〈A〉) is the core of the belief set ÷〈A〉) is a

propositional AGM contraction function,

(IC2) if A /∈ ÷〈W 〉, then ÷〈A,S〉 = ÷〈S〉,

(IC3) if Ā ∩ B̄ = ∅, then ÷〈A,B, S〉 = ÷〈B,A, S〉,

(IC4) if A ⊆ B and A ∪ B̄ /∈ ÷〈A〉, then ÷〈A ∪ B̄, B, S〉 = ÷〈A,B, S〉,

(IC5) if both A ⊆ C̄ or A,B ⊆ C and A�÷ B, then A�÷〈C〉 B, and if the inequality in

the antecedent is strict, that of the consequent is strict, too,

(IC6) ÷〈S〉 is an IC.

The justification for (IC1) should be clear: iterated contractions should reduce to

AGM contractions in the single case. (IC2) merely says that if A isn’t even believed,

then contraction by A followed by contraction by a sequence of propositions should result

in the same belief set as contraction by the sequence of propositions alone. (IC6) says

that the function will still satisfy the axioms at each stage of iteration (it allows Hild

and Spohn to state the other axioms more clearly). (IC5) is equivalent to the widely-

accepted postulates of Darwiche and Pearl (1997), which roughly correspond to the idea

that contraction or revision by C should not change the ordering within C or within C̄,

but rather should only change their orderings relative to each other (see (Hild and Spohn,

2008) for details).

(IC3) corresponds to restricted commutativity. The idea is, if Ā and B̄ are logically

incompatible, then B̄ ⊆ A and Ā ⊆ B. So, if you give up your belief that A, for instance,

then your belief that B should be just as entrenched as before, since contracting your belief

that A corresponds to no longer disbelieving in some Ā-possibilities while leaving one’s

disbelief in any A-possibility unchanged, and there are no Ā-possibilities that are also

B̄-possibilities, and thus all B̄-possibilities should remain unchanged. Therefore, there
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shouldn’t be any interaction between giving up disbelief in Ā and giving up disbelief in

B̄, and hence the order of contraction shouldn’t matter.

(IC4) is known as path independence. Hild and Spohn motivate it as follows: Suppose

you believe that A and B is a logical consequence of A, so you also believe that B and

believe that A∨ B̄. Now, if you were to give up your belief that A, you would also need to

give up either your belief that B or your belief that A ∨ B̄. Suppose that you would give

up your belief that A ∨ B̄ in such a case. Now, (IC4) says that given these assumptions,

it wouldn’t matter whether you did in fact contract A and then B or you just went ahead

and contracted A ∨ B̄ directly and then B; you would end up in the same doxastic state

in either case.

So, the six axioms seem well-justified. Before considering Stalnaker’s counterexample,

let’s address a final worry. Hild and Spohn (2008) demonstrate that one can take an

iterated contraction function that satisfies (IC1)-(IC6) and use it to construct a ranking

function that is unique up to multiplication by a constant. They also demonstrate that,

given a ranking function, one can construct a unique iterated contraction function (since

A → 0 conditionalization is iterable and the contraction of a ranking function κ by a

sequence of propositions corresponds to propositional AGM contraction at each step, so

long as we stipulate that κ÷A = κ whenever κ(Ā) = 0). However, they never demonstrate

that the iterated contraction function induced by a ranking function will itself statisfy

(IC1)-(IC6)! If this were not the case, then any intuitive justification for (IC1)-(IC6) would

be justification for rejecting the Ranking-Theoretic framework as it currently stands, and

hence Hild and Spohn’s argument would be self-defeating. Thankfully, this lacuna can

be filled, and in (Bice, 2008) I proved that the iterated contraction function induced by a

ranking function will always satisfy (IC1)-(IC6).

4 Stalnaker’s Counterexample

Let’s consider Robert Stalnaker’s (2009) counterexample to Ranking-Theoretic iterated

belief revision. I will quote the counterexample in full, and then proceed to explain why
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the counterexample fails. Here it is:

“Consider this example: Fair coins are flipped in each of two rooms. Alice and Bert

(who I initially take to be reliable) report to me, independently, about the results: Alice

tells me that the coin in room A came up heads, while Bert tells me that the coin in

room B came up heads, and so this is what I believe at stage one. Because my sources

were independent, my belief revision policies, at stage one, will give priority to the HATB

and TAHB possibilities over the TATB possibility (Were I to learn that Bert was wrong, I

would continue to believe that Alice was right, and vice versa). But now Carla and Dora,

also two independent witnesses whose reliability, in my view, trumps that of Alice and

Bert, give me information that conflicts with what I heard from Alice and Bert. Carla

tells me that the coin in room A came up tails, and Dora tells me the same about the

coin in room B. These two reports are also given independently, though we may assume

simultaneously. This is stage two. Finally (stage three), Elmer, whose reliability trumps

everyone else, tells me that that the coin in room A in fact landed heads (So Alice was

right after all). What should I now believe about the coin in room B? DP’s postulate (C2)

requires that I return to the original belief that the coin in room B came up heads. Even

though Dora’s information had overturned Bert’s information about the second coin, and

even though Elmer provided no information at all about the result of the coin flip in

room B (we may assume he knew nothing about it), Elmer’s information still forces us to

change our belief about this result (if we follow the DP constraint, C2).”

Stalnaker considers this to be a counterexample to the Darwiche-Pearl revision postu-

late (C2), which is roughly: if A ⊆ B̄, then revision by B followed by revision by A should

result in the same belief set as revision by A alone. This is equivalent to requiring that

the ordering of disbelief within B̄ not change after revision by B. Stalnaker points out

that the Ranking Theorist is committed to the Darwiche-Pearl postulates, and indeed one

can easily show that every ranking function will satisfy (C2). What should the Ranking

Theorist say in response to this example?

The first thing to point out is that, as stated, this example cannot be formulated

within a Ranking-Theoretic framework. To see this, let’s begin by considering a simple
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algebra A over a set of possibilities W. Let W consist of four possibilities corresponding

to the propositions A∩B, A∩ B̄, Ā∩B, and Ā∩ B̄, where A is the proposition that the

coin in room A landed heads, while Ā is the proposition that the coin in room A landed

tails (similarly for B and B̄). As Stalnaker has presented the example, the agent begins

with no information about how each of the coins (each of which the agent knows to be

fair) have landed, and hence let’s represent the agent as initially suspending judgment.

So the ranking function κ that characterizes the agent’s doxastic state at stage zero is

such that κ(A ∩B) = κ(A ∩ B̄) = κ(Ā ∩B) = κ(Ā ∩ B̄) = 0.

Now, Stalnaker represents the initial revision at stage one as a revision by A ∩ B.15

However, since Alice and Bert are independent and reliable witnesses, Stalnaker wants it

to be the case that, after revision, the agent considers the A ∩ B̄ and Ā ∩B possibilities

to be more plausible than the Ā ∩ B̄ possibility, since if the agent were to learn that one

of the two witnesses was wrong, she would continue to believe that the other witness was

right. But consider how revision by A∩B is handled in a Ranking-Theoretic framework:

since Alice and Bert are considered reliable witnesses, the agent conditionalizes on A∩B

with firmness n > 0 for some natural number n. So, after A ∩B → n conditionalization,

κA∩B→n(A∩B) = κ(A∩B|A∩B) = κ(A∩B)− κ(A∩B) = 0, while κA∩B→n(Ā∪ B̄) =

κ(Ā∪B̄|Ā∪B̄)+n = n, and so the agent believes that both coins landed heads, as desired.

However, κA∩B→n(A∩ B̄) = κA∩B→n(Ā∩B) = κA∩B→n(Ā∩ B̄) = n, since all are subsets

of Ā∪ B̄ and hence their ranks will all rise from 0 to n. Hence, the agent treats the other

three possibilities as equally implausible, contrary to what Stalnaker wants.16

What is going wrong here? In our Ranking-Theoretic framework, conditionalizing on
15Stalnaker (2009, footnote 31).
16Should we abandon our assumption that the agent begins by suspending judgment? In order to get

the desired asymmetry between the two-tails possibility Ā ∩ B̄ and the one-heads possibilities A ∩ B̄

and Ā ∩ B after the first revision, we would need to assume that the agent starts out disbelieving that

both coins landed tails to a greater degree than her degree of disbelief in either of the possibilities in

which one coin landed heads and one coin landed tails. But this is clearly not what Stalnaker intended.

Furthermore, if we were to follow this example to its conclusion, although the agent would end stage 3 by

switching her belief about the coin in room B from B̄ to B, this conclusion would not be counterintuitive

for basically the same reasons I give regarding case 2 below.
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the proposition A∩B with some firmness n corresponds to accepting (with firmness n) the

information that the state of the world is such that both coins have landed heads. Since

the agent initally suspended judgment, after accepting this information, the agent will

consider the other three possible states of the world to be equally implausible. Stalnaker

wants to model a doxastic state in which the agent receives two independent pieces of

information about the state of the world; namely, that the coin in room A landed heads,

and that the coin in room B landed heads. In order to model this doxastic state in our

Ranking-Theoretic framework, we should treat the agent’s acceptance of these two pieces

of information as separate revisions. So, let’s consider two modified forms of the example:

in the first, standard case, acceptance of each independent piece of information will be

modeled by a separate revision; in the second case, we will consider what happens when

the agent simply revises by the conjunctions A∩B and then Ā∩B̄, as Stalnaker originally

intended.17

Case 1 : Let κ′ = κA→n. So, after Alice informs the agent that the coin in room

A landed heads, which the agent accepts with firmness n, the agent’s posterior doxastic

state is characterized by the ranking function κ′. In particular, κ′(A∩B) = κ′(A∩B̄) = 0

and κ′(Ā ∩ B) = κ′(Ā ∩ B̄) = n. So, the agent believes that coin A landed heads but

suspends judgment regarding coin B. Now, let κ′′ = κ′B→n. Now, κ′′(A ∩ B) = 0 while

κ′′(A∩ B̄) = κ′′(Ā∩B) = n and κ′′(Ā∩ B̄) = 2n. So, after the second revision, the agent

believes that both coins A and B landed heads and considers the possibilities in which one

coin landed heads and one coin landed tails more plausible than the possibility in which
17Could we simply enrich W so that we can express the propositions that Alice said that the coin in

room A landed heads and that Bert said that the coin in room B landed heads as subsets of W, and then

consider their conjunction? Perhaps, but we would no longer have a counterexample to (C2), since the

conclusion that Stalnaker wants would no longer follow from (C2). Furthermore, one could then model

Stalnaker’s intuitions regarding this example by including information about the perceived reliability of

particular witnesses in the agent’s prior doxastic state in a straightforward way (for example: κ(Ā|Alice

said A)). Similar remarks apply to other attempts to enrich the possibility space. Stalnaker himself

expressed the information accepted as simply whether coin A (or B) landed heads or tails (2009, footnote

31), as is needed to invoke (C2).
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both coins landed tails. Notice in particular that the agent would have been in precisely

the same doxastic state if she had first revised by B and then A. Let κ′′′ = κ′′
Ā→n+m

, for

some natural number m (with n + m roughly corresponding to the perceived reliability

of Carla). So, κ′′′(A ∩ B) = n + m, κ′′′(A ∩ B̄) = 2n + m, κ′′′(Ā ∩ B) = n − n = 0, and

κ′′′(Ā ∩ B̄) = 2n − n = n. Similarly, let κ(4) = κ′′′
B̄→n+m

. So, κ(4)(A ∩ B) = 2n + 2m,

κ(4)(A ∩ B̄) = 2n+m− n = n+m, κ(4)(Ā ∩B) = n+m, and κ(4)(Ā ∩ B̄) = n− n = 0.

So, at the end of stage two, the agent believes that both coins landed tails and considers

the possibility in which both coins landed heads much more implausible than either of

the two possibilities in which one coin landed heads and one coin landed tails. Again,

the order in which the agent revises by Ā and B̄ is irrelevant. In the final stage, Elmer

informs the agent that the coin in room A landed heads. Let κ(5) = κ
(4)
A→n+m+s, for some

natural number s (with n + m + s roughly corresponding to the perceived reliabilitiy of

Elmer). So, κ(5)(A∩B) = 2n+2m−(n+m) = n+m, κ(5)(A∩B̄) = n+m−(n+m) = 0,

κ(5)(Ā∩B) = n+m+(n+m+s) = 2n+2m+s, and κ(5)(Ā∩B̄) = 0+(n+m+s) = n+m+s.

Thus, after the agent accepts Elmer’s information with firmness n+m+s, she believes

that both the coin in room A landed heads and the coin in room B landed tails, which

is precisely the intuitive conclusion that Stalnaker claimed is correct. So, the agent does

not switch her belief regarding coin B, and hence the counterexample fails in this case.

Case 2 : Let κ′ = κA∩B→n. As stated above, after stage one, κ′(A ∩ B) = 0 and

κ′(A ∩ B̄) = κ′(Ā ∩ B) = κ′(Ā ∩ B̄) = n. So, after stage one, the agent believes that

the state of the world is such that both coins landed heads, and considers the other

three possibilities equally implausible. Let κ′′ = κ′
Ā∩B̄→n+m

. So, κ′′(A ∩ B) = n + m,

κ′′(A ∩ B̄) = κ′′(Ā ∩ B) = 2n + m, and κ′′(Ā ∩ B̄) = 0. So, at stage two, the agent

receives and accepts the information that the world is in the tails/tails state, and hence

after revising her beliefs, she believes that the tails/tails state obtains but considers the

heads/heads state more plausible than either the heads/tails state or the tails/heads

state, since the heads/heads state was previously the most plausible state. Finally, let

κ′′′ = κ′′A→n+m+s. So, κ′′′(A∩B) = n+m−(n+m) = 0, κ′′′(A∩B̄) = 2n+m−(n+m) = n,

κ′′′(Ā ∩B) = 2n+m+ (n+m+ s) = 3n+ 2m+ s, and κ′′′(Ā ∩ B̄) = n+m+ s.
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Thus, after the agent accepts the information that the state of the world is such that

the coin in room A landed heads, she revises her belief that the coin in room B landed tails

to the belief that the coin in room B also landed heads, precisely because she considered

the heads/tails state much more implausible than the heads/heads state. In case 2, the

conclusion that Stalnaker wants does in fact obtain, but it is no longer counterintuitive,

since we are no longer modeling the example that Stalnaker intended. We have modeled

a case in which the agent starts out suspending judgment, receives good information that

the state of the world is heads/heads, receives better information that the state of the

world is tails/tails, and finally receives even better information that the state of the world

is either heads/heads or heads/tails. In this case, there is no interaction between states of

the world in the sense that evidence that one state of the world obtains makes other states

of the world more plausible to the agent; all four states of the world are mutually exclusive

and exhaustive. In particular, after revising by the proposition that the state of the world

is heads/heads, the agent does not consider the heads/tails or tails/heads possibilities

more plausible than the tails/tails possibility, since she hasn’t received any information

regarding their relationship, but rather merely received the information that none of them

obtain. This is clearly not the appropriate way to model Stalnaker’s example.

Thus, Stalnaker’s counterexample to Ranking-Theoretic iterated belief revision fails.

Therefore, given our discussion above regarding the limitations of AGM belief revision

and the strengths of Ranking-Theoretic belief revision, it seems we have strong reasons for

accepting the additional structure provided by the Ranking-Theoretic approach. Further-

more, given the measurement result of Hild and Spohn (2008) and the intuitive plausibility

of their six axioms, this additional structure can be given operational justification. Thus,

Ranking Theory seems to be the clear choice for modeling rational constraints on revising

non-quantitative states of belief.
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