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Abstract

The advantages of Bayesian Epistemology are well-known, as are its difficulties. After

briefly introducing Bayesian Epistemology and making a few remarks concerning dichoto-

mous belief, I will focus on the infamous Problem of Old Evidence. I will first examine

several attempts to resolve the Problem of Old Evidence and in the process introduce

both AGM Belief Revision and Ranking Theory. I will conclude by presenting a novel

Ranking-Theoretic resolution of the problem.
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1 Bayesian Epistemology: A Brief Introduction

Bayesian Epistemology gets off the ground with the assumption that an epistemic agent

assigns degrees of belief to propositions, and in particular these degrees of belief can

be captured formally as subjective probabilities. According to the Bayesian, a minimal

requirement for rationality is that the agent’s degrees of belief satisfy the axioms of proba-

bility theory. More specifically, the function from any proposition P to the agent’s degree

of belief in P should be a probability measure.

Definition. Let W be a nonempty set of possibilities. Let A be a Boolean algebra of

subsets of W.1 The elements of A are called propositions. Pr is a probability measure on

A iff Pr is a function from A into R such that for all A,B ∈ A:

(a) 0 ≤ Pr(A) ≤ 1,

(b) Pr(W) = 1,

(c) if A ∩B = ∅, then Pr(A ∪B) = Pr(A) + Pr(B).

This definition has several important consequences. I will mention two: Pr(Ā) =

1− Pr(A) and if A entails B (in our propositional framework: if A ⊆ B), then Pr(A) ≤

Pr(B). Notice that since we are proceeding at the level of propositions rather than sen-

tences in a particular language, we need not worry about logically-equivalent sentences

being assigned the same probability, for (in our framework, at least) two propositions

are logically equivalent exactly if they are in fact the same proposition. For instance,

there is a unique tautological proposition; namely, the set of all possibilities W. So we are

still assuming that the agent is logically omniscient in the sense that the agent treats all

logically equivalent sentences as expressing the same proposition by assigning that propo-

sition a unique subjective probability. In particular, the agent must recognize all sentences

which express the tautology as expressing a proposition to be assigned a probability of 1.
1W can be, for example, the set of outcomes of a single toss of a six-sided die or even the set of all

possible worlds. In many cases one can let A be the entire set of all of subsets of W, but this cannot be

done in every case. However, such technical details are irrelevant for our purposes.
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Furthermore, the agent must never assign a logical consequence of a proposition a lower

probability than the original proposition. These assumptions are indeed controversial,

but they are not the focus of this paper and we will not consider them further here.

Bayesian Epistemology also includes constraints on how agents ought to update their

degrees of belief in light of new evidence. Before stating these constraints, we must

define conditional probability. The conditional probability of A given B is defined as

Pr(A|B) = Pr(A∧B)
Pr(B) , provided that Pr(B) 6= 0, and is undefined otherwise. Intuitively,

Pr(A|B) is the probability of A under the assumption that B. Notice in particular that

Pr(A|B) = Pr(A∧B)
Pr(B) = Pr(B|A)Pr(A)

Pr(B) . This is a special case of Bayes’ Theorem.

We can now state the dynamic law of updating via Strict Conditionalization: If Pr

is the agent’s probability measure at time t and E is the (propositional content of the)

evidence that the agent receives between t and t′, then the agent’s new probability measure

Pr′ at time t′ should be defined for all A ∈ A as Pr′(A) = Pr(A|E).

Notice that after updating by strict conditionalization, the agent will assign a proba-

bility of 1 to the evidential proposition E (and its logical consequences). Additionally, for

all propositions A such that Pr(A) > 0, if Pr(E) = 1 then Pr(E|A) = 1. So the agent

cannot reduce the probability of E via conditionalization after initially conditionalizing

on E. This approach has two obvious shortcomings. For one, updating via strict condi-

tionalization cannot account for cases in which the evidence learned is not learned with

certainty ; i.e. it is not assigned a probability of 1 after being learned. Additionally, even

if one insists that there is always some evidence that is learned with certainty, it isn’t

clear that there will always be an evidential proposition E that is both the propositional

content of that evidence and is a subset of the set of possibilities W.

Jeffrey Conditionalization (Jeffrey, 1983) is a more general account of updating degrees

of belief. Here is the dynamic law of updating via Jeffrey Condtionalization: If Pr is the

agent’s probability measure at time t, {E1, ..., En} is a partition of W, and the only direct,

non-inferential effect of the evidence that the agent receives between t and t′ is to shift

the probabilities of E1, ..., En to Pr′(E1), ..., P r′(En), then the agent’s new probability

measure Pr′ at time t′ should be defined for all A ∈ A as Pr′(A) = Pr(A|E1)Pr′(E1) +
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...+ Pr(A|En)Pr′(En).

There is clearly much more that can be said about the strength and robustness of the

Bayesian framework, but let’s move on to some of its weaknesses.

2 Dichotomous Belief

As we saw in the last section, Bayesian Epistemology deals primarily with degrees of belief,

which are treated formally as subjective probabilities. But in traditional epistemology,

one mainly deals with dichotomous belief; that is, either the agent believes that P or the

agent does not believe that P . In the latter case the agent may believe that P̄ or suspend

judgment regarding P . Can the Bayesian simply define “s believes that P” as “s assigns

a probability of at least x to P”, for some suitably large x? Unfortunately, this move

leads to an infamous paradox.

Consider the Lottery Paradox (Kyburg, 1961). Assume, for reductio, s believes that

P iff s assigns a subjective probability of at least 1− ε to P , where ε is sufficiently small.

Then consider a fair lottery with at least 1
ε tickets. The probability that some ticket will

win is 1, and s knows this, so s believes that some ticket will win. However, for any

particular ticket a, the probability that a will lose is greater than 1− ε, and s knows this

as well, so for any particular ticket a, s believes that a will lose. Furthermore, if belief is

closed under conjunction, s will have the contradictory beliefs that some ticket will win

and every ticket will lose.2 Since ε was arbitrary, this result holds for any definition of

belief in terms of a subjective probability of less than 1.

The Bayesian could define “s believes that P” as “s assigns P a subjective probability

of 1”, but this seems unsatisfactory. For one, recall that once a proposition is assigned a

probability of 1 its probability cannot be reduced via conditionalization. But surely an

agent should be able to give up beliefs in light of new evidence. Furthermore, insisting
2Must belief be closed under conjunction? It is difficult to see how s could believe that P and believe

that Q while failing to believe that P ∧Q, especially since we are already assuming logical omniscience.

In particular, this “resolution” of the lottery paradox would result in s having a set of beliefs that cannot

all be true. In any case, we won’t consider this attempted resolution here.
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that beliefs are assigned a probability of 1 conflates “believing that P” with “being certain

that P”, and surely we do not want to insist that for any P , if s believes that P , then s

is certain that P .

A staunch Bayesian might respond, “So much the worse for dichotomous belief, a

vague concept which has no place in serious epistemology or science.” However, just

because a concept is vague, it doesn’t follow that that concept is unfit for serious epistemic

inquiry. Rejecting dichotomous belief outright seems like a drastic response to the lottery

paradox. Indeed, such a move is radically at odds with much of traditional epistemology.

Dichotomous beliefs are capable of being true or false. One can speak of the accuracy

of degrees of belief, but not the truth of degrees of belief. Also, it seems that one is

justified in asking when it is rational to accept a hypothesis as true rather than merely

more probable than its negation (or an alternative hypothesis). So we have identified one

weakness of the Bayesian framework: the seeming inability to account for dichotomous

beliefs. However, there are more pressing problems in Bayesian Confirmation Theory, and

it is there that we will turn next.

3 The Problem of Old Evidence

Confirmation has been defined in many different ways throughout the Bayesian litera-

ture. Here we will consider several definitions of an evidential proposition E confirming

a hypothesis H:

(1) E confirms H exactly if learning E raises the probability of H.

(2) E confirms H exactly if the probability of H increases after conditionalizing on E.

(3) E confirms H exactly if Pr(H|E) > Pr(H).

Notice that definition (1) is ambiguous between (at least) two readings:

(1a) One does learn E, and this does raise the probability of H.

(1b) If one were to learn E, this would raise the probability of H.
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Notice that if E confirms H according to definition (1a), E also confirms H according

to definitions (1b), (2), and (3). However, several other implications do not hold. For

example, if one does not learn E, then E may confirm H according to (1b) but not (1a).

Also, if Pr(H|E) > Pr(H) and yet E is not (or cannot be) learned, E confirms H ac-

cording to (3) but not (1a). Furthermore, if one updates by Jeffrey conditionalization,

Pr(H|E) may be greater than Pr(H) even if the probability of H does not increase after

conditionalization3, and even if one updates by strict conditionalization, conditionaliza-

tion may never actually occur. In particular, (2) is diachronic while (3) is synchronic.

Hence E can confirm H according to (3) but not (2).

Let’s now consider the Problem of Old Evidence (presented in Glymour, 1980). Con-

sider the following case: the evidence captured by evidential proposition E is known

prior to the formulation of theory H and H entails E. Recall that by Bayes’ Theorem,

Pr(H|E) = Pr(E|H)Pr(H)
Pr(E) . Since E is already known (that is, E is already a member

of background information K), Pr(E) = 1. Since H entails E, Pr(E|H) = 1. Thus

Pr(H|E) = Pr(H). So according to definition (3), E does not confirm H. Since E has

already been learned and cannot be re-learned, the confirmation relation is undefined

according to definition (1a). Similarly, since E is already an element of K and cannot be

re-conditionalized on, the confirmation relation is undefined according to definition (2).

We will consider definition (1b) later.

However, there are many such cases in which it seems that E ought to confirm H.

Here is a famous historical example: Astronomers were aware of the difference between

the actual advance of the perihelion of Mercury (E) and the advance predicted by New-

tonian Physics for quite some time. Einstein eventually proved that his General Theory

of Relativity (H) correctly predicted the advance of the perihelion, and most scientists

considered this to be strong confirmation of H. But since E was already known and H

3This depends on what is meant by “conditionalizing on E”, for if this simply means that E is

learned with certainty and the new probability function is determined by strict conditionalization, then

conditionalization on E may never occur even though Pr(E) increases after observation. If this simply

means that it is observed that E (although E is not necessarily learned with certainty), then Pr(E) may

not increase if Pr(E) was initially very high. In any case conditionalization may never actually occur.
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entails E, Pr(H|E) = Pr(H). Hence, according to the above definitions of confirmation

(except, perhaps, (1b)), either the advance of the perihelion of Mercury does not confirm

the General Theory of Relativity or the confirmation relation is undefined, but this seems

incorrect.

Here is one way that a Bayesian could try and escape this difficulty.4 In our description

above, we assumed without argument that if E is a member of background information

K, then Pr(E) = 1. But if the Bayesian were justified in asserting that Pr(E) < 1 even

though E is a member of K, then it seems that E would indeed confirm H according to def-

inition (3) (since Pr(H|E) = Pr(H)
Pr(E) > Pr(H) when Pr(E) < 1). Furthermore, a Bayesian

can account for uncertain background information and uncertain learning by abandoning

updating by strict conditionalization in favor of updating by Jeffrey conditionalization.

Additionally, it seems we have good reason to assign a subjective probability of less

than 1 to contingent propositions such as E, even after conditionalization. For one, we

learn very little (if anything) with certainty. I seem to see a black raven, but I may

still assign a nonzero probability to the hypothesis that the object in front of me is a

raven-facsimile, I am hallucinating, I am a brain in a vat, etc. Furthermore, propositions

assigned a subjective probability of 1 are unrevisable; that is, the probability of such

propositions cannot be reduced via conditionalization in light of new evidence. But there

are many cases in which we may want to reduce our confidence in old evidence. For

instance, if I see a black raven and then later learn that some fiendish character has

been planting raven-facsimiles around my neighborhood, it seems that I ought to reduce

my subjective probability that the object I saw was a black raven in light of this new

evidence.5 So perhaps we have an easy solution to the problem of old evidence.
4I will consider several attempts to resolve the problem of old evidence, but due to considerations

of brevity I will not consider all such attempts. It should go without saying that this paper makes no

attempt to give a comprehensive account of its subject-matter. For the purposes of this paper, I merely

intend to establish that Ranking Theory can provide an intuitive resolution of this problem, and hence a

lack of successful alternative resolutions would strengthen my argument but is not essential to it.
5A staunch proponent of strict conditionalization may retort that the evidence being learned with

certainty is not that “object a is a black raven” but rather something like “I seem to see a black raven”
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However, Earman (1989) points out that while this may solve what he calls the qual-

itative problem of old evidence, a quantitative problem remains; that is to say, E may

confirm H, but the degree of confirmation will oftentimes be very small. In the GTR case

above, perhaps scientists weren’t certain that their measurement of the advance of the

perihelion of Mercury was correct, but they at least assigned its correctness a high proba-

bility (Pr(E) = 0.99, say). Thus Pr(H|E) = Pr(H)
Pr(E) > Pr(H), but the difference between

Pr(H)
Pr(E) and Pr(H) will then be very small. So E confirms H, but only to a minute degree,

which is again counterintuitive. So resolving the problem in this way simply creates a

new problem.

However, Fitelson (unpublished) demonstrates that while the degree of confirmation

will indeed be minute according to the difference measure, if we adopt the likelihood-ratio

measure then the degree of confirmation can be arbitrarily large.6 Furthermore, Fitelson

(2001) has independently argued that the likelihood-ratio measure should be the preferred

measure of degree of confirmation. So perhaps we can use Fitelson’s result to resolve the

quantitative problem of old evidence.

Unfortunately, this will not even resolve the qualitative problem. Consider the many

controversial assumptions being made here. We are assuming that the agent updates via

Jeffrey conditionalization, and in particular the agent never assigns a probability of 1 to

a contingent proposition such as E (if some such E′ were assigned probability 1, then

the problem of old evidence would resurface relative to any hypothesis H such that H

entails E′). We are also assuming that the correct definition of “E confirms H” just is

(although even establishing the certainty of that evidence requires further argument). However, our set

of possibilities W may not be expressive enough to capture such subtle differences between propositions,

and as Jeffrey (1983) points out, there may be no proposition E such that what the agent learned with

certainty from her observation is that E is true. In any case, we will soon see that insisting on updating

via Jeffrey conditionalization does not avoid the problem of old evidence, and hence it is unnecessary to

resolve this issue here.
6Degree of confirmation according to the difference measure is defined as the difference between

Pr(H|E) and Pr(H), while degree of confirmation according to the likelihood-ratio measure is defined as

Pr(E|H)

Pr(E|H̄)
. For details see Fitelson (2001).
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Pr(H|E) > Pr(H), since this resolution will not work under definitions (1a) or (2).7 But

what motivation could one have for defining “E confirms H” as Pr(H|E) > Pr(H) apart

from the fact that conditionalizing on E raises the probability of H to Pr(H|E)? Since

we’re assuming updating by Jeffrey conditionalization, Pr(H) won’t rise to Pr(H|E)

after conditionalization unless Pr(E) rises to 1, and we are also assuming that Pr(E)

will never rise to 1.8 So it seems one might need to appeal to counterfactuals in order to

motivate definition (3) in this case, and it isn’t clear how to do this without collapsing

into something like definition (1b).

So the qualitative problem would not be resolved merely because Pr(H|E) > Pr(H).

One natural solution is to modify definition (1a) or (2) in order to account for cases of

old evidence. One natural way to do this is to insist that although E has already been

learned and hence it doesn’t make sense to say that learning E raises the probability of

H, it remains true that in the cases where intuitively E should confirm H, if E wasn’t

in our background information K and E could be learned now, then E would raise the

probability of H. This is a form of definition (1b). So if we could contract E from K, we

could then determine whether E confirms H relative to K contracted by E. This assumes,

of course, that we have a well-defined set of background information K, a reasonable

way of contracting E, and a reasonable way of assigning probabilities to E and H after

contraction. These assumptions will be addressed in the next section.

4 Contraction

Howson has defended modifying the Bayesian definition of confirmation so as to include

confirmation relative to K contracted by E as the best way to solve the problem of old

evidence. According to Howson, “When you ask yourself how much support E gives H,

you are plausibly asking how much a knowledge of E would increase the credibility of
7If we follow definitions (1a) or (2), since E has already been learned (and conditionalized on), it is

irrelevant that Pr(E) < 1, for the confirmation relation will be undefined.
8In fact, in many cases it doesn’t seem that Pr(E) should rise at all, since one has not learned anything

new about E.
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H, which is the same thing as asking how much E boosts the credibility of H relative to

what else you currently know. The ‘what else’ is just K − {E}.” (1991, pg. 548)

A natural first question is: “What exactly is K?” K is a set of propositions; namely,

the agent’s background information. A natural suggestion is that K is simply the set of

all propositions A such that Pr(A) = 1. Notice that if we define K in this way, K will

automatically be closed under logical consequence (if Pr(A) = 1 and A entails B, then

Pr(B) = 1). But this definition seems to have several problems. For one, background

information can be given up, revised, etc. in light of new evidence, while propositions

assigned probability 1 cannot (so long as we update by conditionalization). Additionally,

why should we discount background information to which we have assigned a subjective

probability less than 1? Most importantly, it is unclear how we can reasonably define the

unique contraction of E from K, since there can be many different ways of contracting E

from K. For example, if K contains (among other things) the propositions E, ‘if A then

E’, ‘if C then A’, and C, then in order to successfully contract E from K, we must also

remove one of the other three propositions. But only one of them needs to be removed,

and it isnt clear which one ought to be removed. We will return to this difficulty below.

Howson denies that K should be closed under logical consequence. Howson claims that

this is unnecessary since any proposition A entailed by K will be assigned probability 1

with respect to K (assuming that every element of K is itself assigned probability 1).

So K is a collection of propositions assigned probability 1, but not every proposition

assigned probability 1 is an element of K. So one should think of K as an independent

axiomatization of the agent’s background information. Then one can regard K − {E} as

the simple set-theoretic removal of E from K.

However, if A is a member of the agent’s background information and A entails B, it

seems odd to deny that B is a member of the agent’s background information, especially

since Pr(B) ≥ Pr(A) and hence Pr(B) = 1 if Pr(A) = 1. Furthermore, how does

one construct this independent axiomatization of K? It cannot simply be, for instance,

the set of evidential propositions conditionalized upon in the past, for this would not

necessarily result in a logically-independent set of propositions. For example, if one learns
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that object a is colored (E1), and then later learns that object a is red (E2), then one

can still run into some of the problems mentioned above, for how can one contract E1

without also contracting E2 (since E2 entails E1 and hence otherwise E1 will still be

assigned probability 1 with respect to K−{E1} since Pr(E2) = 1)? Howson and Urbach

(1993) admit that this solution does not apply to cases where the elements of K are not

logically independent, but they give us no procedure for constructing the needed logically-

independent set K. So we do not yet have a satisfactory resolution.

Furthermore, it is unclear what the probabilities of E and H ought to be after con-

tracting E from K. Howson insists that Pr(E) and Pr(H) are external elements and

it doesn’t matter that there is no general procedure for computing them, for this is not

the job of Bayesian Epistemology. Howson claims that there is no in principle reason

for thinking that they can’t be computed. Maybe so, but we are now assuming that our

agent has not only assigned a subjective probability to each proposition, but has also

assigned counterfactual probabilities to propositions based upon what probabilities she

would assign were she to not have certain pieces of information that she does in fact have.

This assumption seems problematic, to say the least.

So perhaps Howson has “solved” the problem of old evidence, but only by introducing

a variety of new problems that the Bayesian will need to overcome. But there is hope, for

Howson and Urbach mention that the field of Belief Revision deals explicitly with such

issues as contracting propositions from sets closed under logical consequence. Perhaps the

Bayesian will be able to solve the problems which plague Howson’s solution by appealing

to the Belief Revision literature.

Let’s begin by considering a more general problem: if K is a set of propositions closed

under logical consequence, how ought one contract a proposition E from K? There will

often be many different ways of contracting a proposition E, as in the example above.

Alchourron, Gärdenfors, and Makinson (1985) provide a now-standard account of such

contraction.9

9Since we will soon see that AGM Contraction cannot save Howson’s resolution, I’ve ommitted most

of the more technical details here.
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Let’s begin by defining a belief set : K is a belief set iff K is a subset of A such that

W ∈ K; ∅ /∈ K; if A,B ∈ K then A ∩ B ∈ K; and if A ∈ K and A ⊆ B ∈ K, then B ∈ K.

So intuitively K contains the tautology, does not contain the contradiction, and is closed

under both conjunction and logical consequence.

An AGM contraction function ÷ characterizes an agent’s doxastic state at some time

t and includes information on how to contract any non-tautological proposition from the

agent’s belief set K. That is, given a non-tautological proposition E, ÷(E) determines a

new belief set K′. This contraction function can be modeled by an ordering of disbelief

over the set of possibilities W ; that is, one can construct a unique contraction function

from such an ordering (and vice versa).

We can now state a law of simple conditionalization: If the contraction function ÷

characterizes the doxastic state of the subject s at time t and E is the propositional

content of the evidence s receives between t and t′, then ÷(Ē) ∩E is s’s belief core at t′;

that is, s believes A at t′ exactly if ÷(Ē) ∩ E is a subset of A.10

There is a big problem with this law: the prior doxastic state is represented by a

contraction function, but the posterior doxastic state is merely represented by a belief

set. This violates what is known as the Principle of Categorical Matching: Prior doxastic

states and posterior doxastic states should be represented in the same format. Otherwise,

we seem to have no way of handling iterated belief changes. This is the Problem of Iterated

Belief Revision. As a result, we still do not have a satisfactory account of contraction.

Can one simply use the same contraction function in order to continue updating

one’s belief set after the first contraction? Darwiche and Pearl (1997) have given several

examples of how such reasoning can go horribly wrong. I reproduce one such example

here:

“Example 1 We see a strange new animal X at a distance, and it appears to be barking
10Although this law could be stated more elegantly in terms of a revision function, I’ve chosen to

avoid introducing additional formal definitions, especially since we are mostly interested in contraction.

Additionally, contraction functions and revision functions are interdefinable by the Levi and Harper

Identities (ommitted here). This also applies to the example below, which refers to a revision function

rather than a contraction function.
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like a dog, so we conclude that X is not a bird, and that X does not fly. Still, in the event

that X turns out to be a bird, we are prepared to change our mind and conclude that

X flies. Observing the animal closely, we realize that it actually can fly. The question

now is whether we should retain our willingness to believe that X flies in case X turns

out to be a bird after all. We submit that it would be strange to give up this conditional

belief merely because we happened to observe that X can fly. Yet, we provide later an

AGM-compatible revision operator ◦ that permits such behavior.”

Let’s return to the problem of old evidence. Recall that we wanted to contract an

evidential proposition E from a set of background information K closed under logical

consequence. So even though we haven’t found a complete characterization of contraction,

we only need to contract a single proposition from K and then compute probabilities with

respect to K − {E} in order to determine whether or not E confirms H. So perhaps we

have a satisfactory account of contraction after all.

However, there is a serious problem with this approach. As currently formulated, K

is a set of propositions with probability 1. So we can’t construct the required ordering of

disbelief over W in order to construct a unique contraction of E, since all of the elements

of K are maximally believed!11 However, a contraction function doesn’t have to be based

upon an ordering of disbelief over W. Gärdenfors (1988) originally proposed an epistemic

entrenchment ordering, where instead of propositions being ordered by plausibility, they

are ordered by “usefulness in inquiry and deliberation”. When forced to choose between

giving up different propositions, one is supposed to give up the least-entrenched propo-

sitions. But such an entrenchment ordering will not come from an agent’s probability

function, and hence would have to be postulated as an additional primitive element of

the agent’s doxastic state. Furthermore, it isn’t obvious that our contraction of E from

K should be based upon the epistemic “usefulness” of particular propositions as opposed
11If one includes propositions with probability less than 1 in K, then one will need a more precise

account of what counts as background information and what does not. Also, one is then committed to

updating via Jeffrey conditionalization, since contraction of E is undefined if E is maximally believed.

Most importantly, this won’t avoid the difficulty addressed in the following paragraph.
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to their plausibility.

Even if we find a way around this difficulty, a more serious problem remains. What

probabilities should be assigned to E and H after contracting E from K? E must of course

be assigned a probability of less than 1, for otherwise we have made no progress. AGM

Belief Revision won’t help us here, and as we discussed above, it seems counterintuitive

to suppose that our agent has assigned counterfactual probabilities to propositions based

upon what probabilities she would assign were she to not have certain pieces of information

that she does in fact have. For the moment, this problem appears intractable.

So it seems that we need some way of combining an account of dichotomous belief

changes with degrees of belief. And thus we finally turn to Ranking Theory.

5 Ranking Theory

A negative ranking function (originally presented as an ordinal conditional function in

Spohn 1988) assigns a nonnegative real number or ∞ to every proposition over W, where

the real numbers are meant to represent degrees of disbelief. More formally, κ is a negative

ranking function for A iff κ is a function from A into R+ = R ∪ {∞} such that for all

A,B ∈ A:

(a) κ(A) ≥ 0, κ(W) = 0, and κ(∅) =∞,

(b) κ(A ∪B) = min{κ(A), κ(B)}.

Notice that either κ(A) = 0 or κ(Ā) = 0 or both, since min{κ(A), κ(Ā)} = κ(A ∪ Ā) =

κ(W ) = 0.

Intuitively, negative ranking functions capture both an agent’s dichotomous belief set

and the firmness of the agent’s beliefs. That is, an agent believes that P exactly if the

agent assigns some positive rank of disbelief to P̄ . The agent assigns a rank of 0 to both

P and P̄ exactly if the agent suspends judgment regarding P . One can then define the

belief set associated with a negative ranking function κ, K(κ), as the set of all propositions
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P such that κ(P̄ ) > 0. One can easily show that this belief set is indeed a belief set as

defined above; in particular it will be consistent and closed under logical consequence.

As we will soon see, negative ranking functions behave similarly to probability func-

tions. First of all, for any A,B ∈ A such that κ(A) <∞, the conditional rank of B given A

is defined as κ(B | A) = κ(A∩B)−κ(A). As a consequence, κ(A∩B) = κ(B | A)+κ(A).

So intuitively disbelief in A and disbelief in B given A add up to disbelief in both A and

B.

We can now define the conditionalization of a ranking function: Let κ be a negative

ranking function for A and A ∈ A such that κ(A), κ(Ā) < ∞, and x ∈ R+. Then the

A→ x conditionalization κA→x of κ is defined as κA→x(B) = min{κ(B | A), κ(B | Ā)+x}.

Intuitively, after conditionalization the possibilities in A are shifted downward so that

κA→x(A) = 0 and the possibilities in Ā are shifted upward so that κA→x(Ā) = x. So after

conditionalization A is believed with firmness x. This is of course inspired by Jeffrey con-

ditionalization. Furthermore, this process satisfies the Principle of Categorical Matching

and is clearly iterable.

So we can state a dynamic law of conditionalization for ranking functions: If the prior

doxastic state of the subject s at time t is characterized by the ranking function κ and

if s receives evidence with propositional content E and firmness n between t and t′, then

the posterior state of s at t′ is characterized by the E → n conditionalization of κ.

In particular, we can now define the contraction of a ranking function κ by evidential

proposition E as follows: Let κ be a negative ranking function for A and E ∈ A such

that κ(Ē) <∞. Then the contraction κ÷E of κ by E is defined as

κ÷E =

 κ, if κ(Ē) = 0

κE→0, if κ(Ē) > 0

 .

And the single contraction ÷κ induced by κ is defined as the function assigning to each

A ∈ A such that κ(Ā) <∞ the belief set ÷κ(A) = K(κ÷A).

Notice that contraction is fully iterable and is defined uniquely given an agent’s ranking

function. Also, the single contraction induced by κ is an AGM contraction function

(Spohn, unpublished).
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Before returning to the problem of old evidence, let’s consider an objection to ranking

theory. It is quite simple. What are the agent’s ranks supposed to be? If they merely order

an agent’s disbelief in propositions, have we really gained anything over the AGM model?

That is, we have assigned real numbers to propositions rather than merely indicated their

position in an ordering, but do we need any arithmetical properties of these real numbers?

In particular, do differences between ranks matter, or is, for instance, ranking propositions

P , Q, and R as 1, 2, and 3, no different (doxastically speaking) from ranking them as 2,

10, and 1,000?

The differences do indeed matter. In fact, Hild and Spohn (2008) have demonstrated

that one can measure ranks on a ratio scale via iterated contraction functions. In partic-

ular, if an iterated contraction function behaves in an appropriate way, one can construct

a difference comparison from the contraction function and use that as a difference mea-

surement in order to construct a full ranking function.

What does “behaves in an appropriate way” mean? Hild and Spohn show that one

can construct an acceptable difference comparison precisely when the iterated contrac-

tion function satisfies 6 axioms (IC1)− (IC6) (stated in the appendix). Hild and Spohn

also provide strong arguments that these axioms are intuitive axioms for iterated con-

traction. So they seem to solve two problems at once: axiomatizing iterated contraction

and measuring ranks. Intuitively, differences between ranks correspond to differences in

contracting propositions from a belief set. So given an agent’s full belief set and infor-

mation on how the agent would contract her belief set if she needed to remove particular

propositions, provided that such contraction satisfies the axioms (IC1)− (IC6), one can

construct an entire ranking function. Thus, to the extent that Hild and Spohn are correct

that all other attempts to deal with iterated contraction in the belief revision literature

are unsatisfactory, they have provided a strong argument for both ranking theory and

their particular account of iterated contraction.

There is a lacuna in Hild and Spohn’s approach. Hild and Spohn claim that one can

take a ranking function, construct the corresponding iterated contraction function, and

then reconstruct the original ranking function uniquely up to multiplication by a con-
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stant. Recall that a ranking function determines a unique iterated contraction function.

Additionally, Hild and Spohn demonstrate that an iterated contraction function satisfying

(IC1)− (IC6) can also induce an entire ranking function, without any need to refer to an

original ranking function. However, Hild and Spohn never prove that these two methods

coincide; namely, that the iterated contraction function induced by a ranking function

will itself always satisfy (IC1)− (IC6). Thankfully, this lacuna can be filled, and I have

done so in the appendix.

What about the Problem of Old Evidence? Let’s reconstruct the problem in a Ranking-

Theoretic framework. Since H entails E, κ(Ē | H) = ∞ (E is maximally believed given

H). Since E is already contained in the belief set K, κ(Ē) = y for some large y.

I propose that we translate Howson’s intuitive but flawed resolution of the Problem of

Old Evidence into our Ranking-Theoretic framework. So consider the contraction of κ by

E. Since E is believed, κ÷E is simply the E → 0 conditionalization of κ. In particular,

H will not be believed after contraction by E (κE→0(H̄) = 0). Furthermore, once we re-

conditionalize on E with firmness n for some large n, (κE→0)E→n(H̄) = min{κE→0(H̄ |

E), κE→0(H̄ | Ē) + n} = min{κE→0(H̄ ∩ E), n} = min{κ(H̄ ∩ E), n}, which will equal

κ(H̄∩E) provided that n is not too small. So H will be believed after re-conditionalization

with the same degree of firmness as the agent had in the proposition ‘H ∨ Ē’ prior to

contraction (which in particular must be greater than or equal to the degree of firmness

the agent had in H prior to contraction and re-conditionalization).

So in the case considered above the agent could contract E from her belief set and then

re-conditionalize on E, and her degree of belief in H would indeed increase significantly

once she re-conditionalized. Thus E does indeed confirm H relative to K contracted by

E. Also, contraction is uniquely defined with respect to the initial doxastic state of the

agent (there aren’t multiple ways to contract E), and provided that E is conditionalized

with a high degree of firmness, the resulting degree of belief in H will also be uniquely

defined with respect to the initial doxastic state. Hence by adopting Ranking Theory, we

can avoid all of the problems that plagued Howson’s resolution of the Problem of Old

Evidence.
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6 Concluding Remarks

So what have we learned? Bayesian Epistemology seems unable to account for di-

chotomous belief and flounders when confronted with the problem of confirming newly-

formulated hypotheses with evidence that is already known. The AGM Belief Revision

literature offered some hope of resolution, but AGM contraction functions are not uniquely

defined with respect to an agent’s degrees of belief and furthermore can’t help us formulate

new probabilities for E and H. However, Ranking Theory allows us to define contraction

uniquely in terms of the agent’s belief set and degrees of firmness in the beliefs therein.

One can then re-conditionalize on E, which will indeed result in an increase in the firm-

ness of belief in H, and furthermore this firmness will also be uniquely defined provided

E is itself re-conditionalized upon with a high degree of firmness.

E may not raise the probability of H when H is a newly-formulated theory and

E is already known, but it will often still be true that if E wasn’t already a member

of our background information, then learning E would raise the probability of H. By

abandoning talk of probability in favor of talk of dichotomous belief with differing degrees

of firmness, Ranking Theory can capture this intuition successfully while it seems that

Bayesian Epistemology cannot. So, coupled with the resolution of long-standing problems

in AGM Belief Revision, it seems that we have a strong reason for choosing Ranking

Theory as an alternative to both Bayesian Epistemology and AGM Belief Revision. There

is clearly much more that can be said about this interesting topic, especially regarding the

Problem of New Theories and the order in which an agent conditionalizes on a sequence

of evidential propositions, but such topics are beyond the intended scope of this essay.
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A Appendix

A.1 Theorem and Proof

Theorem. Let W be a nonempty set of possibilities. Let A be a Boolean algebra of

subsets of W. Let κ be a negative ranking function for A. Let N = {A ∈ A | κ(A) =∞}

and N c = {Ā ∈ A | A ∈ N} = {Ā ∈ A | κ(A) =∞}. Let ÷κ be the iterated contraction

induced by κ. Let AN denote the set of all finite sequences of elements of A−N c.

Then ÷κ is an iterated contraction (IC) for (A, N ); i.e. ÷κ is a potential IC for

(A, N ) such that for all A,B,C ∈ A−N c and S ∈ AN :

(IC1) the function A 7→ ÷κ〈A〉 is a single contraction (as specified in definition 2.10),

(IC2) if A /∈ ÷κ〈〉, then ÷κ〈A,S〉 = ÷κ〈S〉,

(IC3) if Ā ∩ B̄ = ∅, then ÷κ〈A,B, S〉 = ÷κ〈B,A, S〉,

(IC4) if A ⊆ B and A ∪ B̄ /∈ ÷κ〈A〉, then ÷κ〈A ∪ B̄, B, S〉 = ÷κ〈A,B, S〉,

(IC5) if both A ⊆ C̄ or A,B ⊆ C and A�÷κ B, then A�÷κ〈C〉 B, and if the inequality

in the antecedent is strict, that of the consequent is strict, too,

(IC6) ÷κ〈S〉 is an IC.

Proof. ÷κ : S 7−→ K(κ÷〈S〉) is of course a potential IC for (A, N ). It remains to show

that for all A,B,C ∈ A−N c and for all S ∈ AN , (IC1) - (IC6) hold.

Choose A,B,C ∈ A − N c and S ∈ AN . So κ(Ā), κ(B̄), κ(C̄) < ∞. Furthermore, if

S = 〈S1, . . . , Sn〉 for some positive n ∈ N, κ(S̄i) <∞ (i = 1, . . . , n). Otherwise, S = 〈〉.

(IC1): ÷κ〈A〉 = ÷κ(A) = K(κ÷A). So the function A 7→ ÷κ〈A〉 is a single contrac-

tion by Definition 2.14 and Corollary 2.15.12

12Wolfgang Spohn has pointed out to me in personal correspondence that this observation is already

contained in (Spohn, 1988).

19



(IC2): Assume A /∈ ÷κ〈〉. So A /∈ K(κ) = {D ∈ A | κ(D̄) > 0}. So κ(Ā) = 0. So

÷κ〈A,S〉 = K(κ÷〈A,S〉) = K((. . . (κ÷A) . . . )÷Sn) = K((. . . (κ) . . . )÷Sn) = K(κ÷〈S〉) =

÷κ〈S〉.

(IC3): Assume Ā ∩ B̄ = ∅. So A ∪ B = W . So κ(Ā ∩ B̄) = κ(Ā) + κ(B̄ | Ā) = ∞

and κ(A ∪B) = 0.

If A /∈ ÷κ〈〉 or B /∈ ÷κ〈〉, then either κ(Ā) = 0 or κ(B̄) = 0, respectively. In either case

we have÷κ〈A,B, S〉 = K(κ÷〈A,B,S〉) = K((. . . ((κ÷A)÷B) . . . )÷Sn) = K((. . . ((κ÷B)÷A) . . . )÷Sn) =

÷κ〈B,A, S〉, since (κ÷A)÷B = (κ÷B)÷A.

So assume A,B ∈ ÷κ〈〉 = K(κ). So κ(Ā), κ(B̄) > 0 and κ(A) = κ(B) = 0. Also, since

Ā∩ B̄ = ∅, Ā ⊆ B and B̄ ⊆ A. We shall prove that (κ÷A)÷B = (κ÷B)÷A, which of course

completes our proof that ÷κ〈A,B, S〉 = ÷κ〈B,A, S〉.

Since κ(Ā) > 0, (κ÷A)÷B = (κA→0)÷B . Since κA→0(B̄) = min{κ(B̄ | A), κ(B̄ |

Ā)} = min{κ(A ∩ B̄),∞} = κ(A ∩ B̄) = κ(B̄) > 0, (κ÷A)÷B = (κA→0)B→0. Similarly,

(κ÷B)÷A = (κB→0)A→0.

Choose D ∈ A such that κ(D̄) < ∞. (κA→0)B→0(D) = min{κA→0(D | B), κA→0(D |

B̄)} = min{κA→0(B ∩D)− κA→0(B), κA→0(B̄ ∩D)− κA→0(B̄)} =

min
{

min{κ(B∩D | A), κ(B∩D | Ā)}−min{κ(B | A), κ(B | Ā)},min{κ(B̄∩D | A), κ(B̄∩

D | Ā)} −min{κ(B̄ | A), κ(B̄ | Ā)}
}

= min
{

min{κ(A ∩ B ∩D), κ(D | Ā)} −min{κ(A |

B), 0},min{κ(B̄ ∩D),∞} −min{κ(B̄),∞}
}

= min{κ(A ∩ B ∩D), κ(D | Ā), κ(D | B̄)}.

Similarly, (κB→0)A→0(D) = min{κ(A∩B∩D), κ(D | Ā), κ(D | B̄)} and hence (κ÷A)÷B =

(κA→0)B→0 = (κB→0)A→0 = (κ÷B)÷A. Thus ÷κ〈A,B, S〉 = ÷κ〈B,A, S〉.

(IC4): Assume A ⊆ B and A∪B̄ /∈ ÷κ〈A〉 = {D ∈ A | κ÷A(D̄) > 0}. So κ÷A(Ā∩B) = 0.

So either κ(Ā) = 0 = κ(Ā∩B) or both κ(Ā) > 0 and min{κ(Ā∩B | A), κ(Ā∩B | Ā)} =

min{∞, κ(B | Ā)} = κ(B | Ā) = κ(Ā∩B)−κ(Ā) = 0. In either case κ(Ā∩B) = κ(Ā) <∞.

So Ā ∩B 6= ∅ and A ( B.

If A /∈ K(κ), then κ(Ā) = κ(Ā ∩ B) = 0, so ÷κ〈A ∪ B̄, B, S〉 = K(κ÷〈A∪B̄,B,S〉) =

K((. . . ((κ÷A∪B̄)÷B) . . . )÷Sn) = K((. . . (κ÷B) . . . )÷Sn) = K((. . . ((κ÷A)÷B) . . . )÷Sn) =
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÷κ〈A,B, S〉.

So assume A ∈ K(κ). So κ(Ā) = κ(Ā ∩ B) > 0. Since A ⊆ B, B̄ ⊆ Ā and hence

κ(B̄) = κ(B̄ ∩ Ā) ≥ κ(Ā) = κ(Ā ∩B) > 0, since κ(Ā) = min{κ(Ā ∩B), κ(Ā ∩ B̄)}. Thus

(κ÷A∪B̄)÷B = (κA∪B̄→0)÷B and (κ÷A)÷B = (κA→0)÷B .

κA∪B̄→0(B̄) = min{κ(B̄ | A ∪ B̄), κ(B̄ | Ā ∩ B)} = κ(B̄ | A ∪ B̄) = min{κ(A ∩

B̄), κ(B̄)}−min{κ(A), κ(B̄)} = min{∞, κ(B̄)}−min{0, κ(B̄)} = κ(B̄) > 0. So (κ÷A∪B̄)÷B =

(κA∪B̄→0)B→0. κA→0(B̄) = min{κ(B̄ | A), κ(B̄ | Ā)} = κ(B̄ | Ā) = κ(Ā ∩ B̄) − κ(Ā) =

κ(B̄)− κ(Ā). We will show that (κA∪B̄→0)B→0 = (κA→0)÷B .

ChooseD ∈ A such that κ(D̄) <∞. (κA∪B̄→0)B→0(D) = min{κA∪B̄→0(D | B), κA∪B̄→0(D |

B̄)} = min{κA∪B̄→0(B∩D)−κA∪B̄→0(B), κA∪B̄→0(B̄∩D)−κA∪B̄→0(B̄)} = min
{

min{κ(B∩

D | A ∪ B̄), κ(B ∩D | Ā ∩ B)} −min{κ(B | A ∪ B̄), κ(B | Ā ∩ B)},min{κ(B̄ ∩D | A ∪

B̄), κ(B̄∩D | Ā∩B)}−min{κ(B̄ | A∪B̄), κ(B̄ | Ā∩B)}
}

= min
{

min{κ(A∩D), κ(B∩D |

Ā)} − min{κ(A), 0},min{κ(B̄ ∩ D),∞} − min{κ(B̄),∞}
}

= min{κ(A ∩ D), κ(B ∩ D |

Ā), κ(D | B̄)}.

Since κA→0(B̄) = κ(B̄) − κ(Ā) and κ(B̄) = κ(Ā ∩ B̄) ≥ κ(Ā), there are two possible

cases:

Case 1 : κ(B̄) > κ(Ā). So (κA→0)÷B = (κA→0)B→0. Now (κA→0)B→0(D) =

min
{

min{κ(B ∩ D | A), κ(B ∩ D | Ā)} − min{κ(B | A), κ(B | Ā)},min{κ(B̄ ∩ D |

A), κ(B̄ ∩ D | Ā)} − min{κ(B̄ | A), κ(B̄ | Ā)}
}

= min
{

min{κ(A ∩ D), κ(B ∩ D |

Ā)}−min{κ(A∩B), 0},min{∞, κ(B̄∩D)−κ(Ā)}−min{∞, κ(B̄)−κ(Ā)}
}

= min{κ(A∩

D), κ(B ∩D | Ā), κ(D | B̄)} = (κA∪B̄→0)B→0(D).

Case 2 : κ(B̄) = κ(Ā). So (κA→0)÷B = κA→0. So κ(B̄) = κ(Ā) = κ(Ā ∩ B) =

κ(Ā ∩ B̄) > 0, κ(A ∩ B̄) = ∞, and κ(A ∩ B) = κ(A) = κ(B) = 0. In this case,

(κA∪B̄→0)B→0(D) = min{κ(A ∩ D), κ(Ā ∩ B ∩ D) − κ(Ā), κ(Ā ∩ B̄ ∩ D) − κ(Ā)} =

min{κ(D | A), κ(D | Ā)}, since κ(Ā ∩ D) = min{κ(Ā ∩ B ∩ D), κ(Ā ∩ B̄ ∩ D)}. So

(κA∪B̄→0)B→0(D) = κA→0(D) = (κA→0)÷B(D).

So in either case, (κ÷A∪B̄)÷B = (κA∪B̄→0)B→0 = (κA→0)÷B = (κ÷A)÷B . Thus

÷κ〈A ∪ B̄, B, S〉 = ÷κ〈A,B, S〉.
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(IC5): Assume A �÷κ B and either A ⊆ C̄ or A,B ⊆ C. So either B ∈ N or

Ā /∈ ÷κ〈Ā ∩ B̄〉.

If B ∈ N then trivially A�÷κ〈C〉B. Also, if B ∈ N and A�÷κB, then B̄ ∈ ÷κ〈Ā∩B̄〉.

So κ÷Ā∩B̄(B) > 0. In particular, κ÷Ā∩B̄ is well-defined, so κ(A ∪ B) < ∞. So since

κ(B) = ∞, κ(A) < ∞. Hence if κ(C̄) = 0, then (κ÷C)÷Ā∩B̄(B) = κ÷Ā∩B̄(B) > 0 and

hence B̄ ∈ ÷κ〈C, Ā ∩ B̄〉. If κ(C̄) > 0, then κ÷C(B) = κC→0(B) = min{κ(B | C), κ(B |

C̄)} = ∞, since ∞ > κ(C̄) > 0 and κ(B) = ∞. So either κC→0(A ∪ B) = 0 and hence

(κ÷C)÷Ā∪B̄(B) = κC→0(B) = ∞ or κC→0(A ∪ B) > 0 and hence (κ÷C)÷Ā∩B̄(B) =

min{κC→0(B | Ā ∩ B̄), κC→0(B | A ∪ B)} = ∞, since both κC→0(Ā ∩ B̄) = 0 and

κC→0(A∪B) = κC→0(A) = min{κ(A | C), κ(A | C̄)} = min{κ(A∩C), κ(A∩C̄)−κ(C̄)} <

∞ since min{κ(A∩C), κ(A∩ C̄)} = κ(A) <∞. So B̄ ∈ ÷κ〈C, Ā∩ B̄〉. Thus A�÷κ〈C〉 B.

So assume B /∈ N and Ā /∈ ÷κ〈Ā∩ B̄〉. So Ā /∈ K(κ÷〈Ā∩B̄〉) = {D ∈ A | κ÷Ā∩B̄(D̄) >

0}. So κ÷Ā∩B̄(A) = 0. So either min{κ(A), κ(B)} = 0 = κ(A) or min{κ(A), κ(B)} >

0 and min{κ(A | Ā ∩ B̄), κ(A | A ∪ B)} = κ(A | A ∪ B) = min{κ(A), κ(A ∩ B)} −

min{κ(A), κ(B)} = κ(A)−min{κ(A), κ(B)} = 0. So either κ(A) = 0 or κ(A) = κ(B) > 0

or κ(B) > κ(A) > 0. So κ(A) ≤ κ(B).

If A �÷κ B, then furthermore B̄ ∈ ÷κ〈Ā ∩ B̄〉, so κ÷Ā∩B̄(B) > 0 and hence either

κ(A ∪ B) = 0 and hence 0 = κ(A) < κ(B) or κ(A ∪ B) > 0 and hence κ(A), κ(B) > 0

and min{κ(B | Ā ∩ B̄), κ(B | A ∪ B)} = min{κ(B), κ(A ∩ B)} − min{κ(A), κ(B)} =

κ(B)− κ(A) > 0. So if A�÷κ B, then κ(A) < κ(B).

It suffices to show that Ā /∈ ÷κ〈C, Ā∩B̄〉 = K(κ÷〈C,Ā∩B̄〉) = {D ∈ A | (κ÷C)÷Ā∩B̄(D̄) >

0}. So it suffices to show that (κ÷C)÷Ā∩B̄(A) = 0.

If κ(C̄) = 0, then (κ÷C)÷Ā∩B̄ = κ÷Ā∩B̄ and Ā /∈ ÷κ〈Ā ∩ B̄〉 = ÷κ〈C, Ā ∩ B̄〉. (Also,

if κ(C̄) = 0 and A �÷κ B, then B̄ ∈ ÷κ〈Ā ∩ B̄〉 = ÷κ〈C, Ā ∩ B̄〉.) So assume κ(C̄) > 0.

So (κ÷C)÷Ā∩B̄ = (κC→0)÷Ā∩B̄ and κ(C) = 0.

κC→0(A) = min{κ(A | C), κ(A | C̄)} and κC→0(B) = min{κ(B | C), κ(B | C̄)}. So

κC→0(A∪B) = min{κC→0(A), κC→0(B)} = min{κ(A | C), κ(A | C̄), κ(B | C), κ(B | C̄)}.

Also, (κC→0)Ā∩B̄→0(A) = min{κC→0(A | Ā∩B̄), κC→0(A | A∪B)} = κC→0(A | A∪B) =

min{κC→0(A), κC→0(A ∩ B)} − κC→0(A ∪ B) = κC→0(A) − κC→0(A ∪ B). Similarly,
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(κC→0)Ā∩B̄→0(B) = κC→0(B)− κC→0(A ∪B).

Assume, for contradiction, that (κ÷C)÷Ā∩B̄(A) > 0. So either κC→0(A ∪B) = 0 and

thus (κ÷C)÷Ā∩B̄(A) = κC→0(A) > 0 and hence 0 = κC→0(A ∪B) = min{κ(B | C), κ(B |

C̄)} < min{κ(A | C), κ(A | C̄)} or κC→0(A ∪ B) > 0 and thus 0 < (κ÷C)÷Ā∩B̄(A) =

(κC→0)Ā∩B̄→0(A) = κC→0(A)− κC→0(A ∪B). In either case min{κ(B | C), κ(B | C̄)} <

min{κ(A | C), κ(A | C̄)}.

Case 1 : A ⊆ C̄. So min{κ(A | C), κ(A | C̄)} = κ(A | C̄) = κ(A) − κ(C̄) and

either κ(B ∩ C) < κ(A) − κ(C̄) or κ(B ∩ C̄) − κ(C̄) < κ(A) − κ(C̄). Since κ(B) =

min{κ(B ∩ C), κ(B ∩ C̄)}, in either case κ(B) < κ(A), contradicting κ(A) ≤ κ(B).

Case 2 : A,B ⊆ C. So κ(B) − κ(C) < κ(A) − κ(C) and hence κ(B) < κ(A), again

contradicting κ(A) ≤ κ(B).

So (κ÷C)÷Ā∩B̄(A) = 0. So Ā /∈ ÷κ〈C, Ā ∩ B̄〉. Thus A�÷κ〈C〉 B.

Furthermore, if A�÷κ B and (κ÷C)÷Ā∩B̄(B) = 0, then either κC→0(A ∪ B) = 0 and

κC→0(B) = min{κ(B | C), κ(B | C̄)} = 0 or κC→0(A ∪ B) > 0 and (κC→0)Ā∩B̄→0(B) =

κC→0(B) − κC→0(A ∪ B) = 0 so min{κ(B | C), κ(B | C̄)} ≤ min{κ(A | C), κ(A | C̄)}

(which of course also holds in the first case). Hence by a similar argument (namely, by

substituting ‘≤’ for ‘<’ in the two cases above), κ(B) ≤ κ(A), contradicting κ(A) < κ(B).

So (κ÷C)÷Ā∩B̄(B) > 0. So B̄ ∈ ÷κ〈C, Ā ∩ B̄〉. Thus A�÷κ〈C〉 B.

(IC6): Since κ÷〈S〉 is a negative ranking function, ÷κ〈S〉, the iterated contraction in-

duced by κ÷〈S〉 , must satisfy (IC1)–(IC5) (as we have just proven). Thus ÷κ〈S〉 is an IC.

Therefore, ÷κ is an iterated contraction (IC) for (A, N ).
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A.2 Definitions and Corollaries

Let W be a nonempty set of possibilities. Let A be a Boolean algebra of subsets of W.

The elements of A are called propositions.

Definition 2.113. κ is a negative ranking function for A iff κ is a function from A into

R+ = R ∪ {∞} such that for all A,B ∈ A:

(a) κ(A) ≥ 0, κ(W) = 0, and κ(∅) =∞,

(b) κ(A ∪B) = min{κ(A), κ(B)}.

Corollary 2.2. Either κ(A) = 0 or κ(Ā) = 0 or both.

Proof. min{κ(A), κ(Ā)} = κ(A ∪ Ā) = κ(W ) = 0.

Corollary. Let κ be a negative ranking function for A and A ∈ A. If B ∈ A, then

κ(B) = min{κ(A ∩B), κ(Ā ∩B)}.

Proof. min{κ(A∩B), κ(Ā∩B)} = κ((A∩B)∪ (Ā∩B)) = κ((A∪ Ā)∩B) = κ(W ∩B) =

κ(B).

Definition 2.5. Let κ be a negative ranking function for A and A ∈ A such that κ(A) <

∞. Then, for any B ∈ A, the conditional rank of B given A is defined as κ(B | A) =

κ(A ∩B)− κ(A).

Definition 2.8. Let κ be a negative ranking function for A and A ∈ A such that

κ(A), κ(Ā) < ∞, and x ∈ R+. Then the A → x conditionalization κA→x of κ is de-

fined as κA→x(B) = min{κ(B | A), κ(B | Ā) + x}.

K is a (consistent) belief set iff K is a subset of A such that W ∈ K; ∅ /∈ K; if A,B ∈ K

then A ∩B ∈ K; and if A ∈ K and A ⊆ B ∈ K, then B ∈ K. Let F(A) denote the set of

belief sets in A.

I is an ideal iff I is a subset of A such that Ic = {Ā ∈ A | A ∈ I} is a belief set. Let

I(A) denote the set of ideals in A.
13My numbering of definitions and corollaries follows (Hild and Spohn, 2008).
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Definition 2.10. Let N ∈ I(A) be an ideal in A. Then ÷ is a single contraction

for A − N c iff ÷ is a function assigning to each proposition A ∈ A − N c a belief set

÷(A) ∈ F(A) such that:

(a) A /∈ ÷(A) ⊆ ÷(∅),

(b) if A /∈ ÷(A ∩B), then ÷(A) ∩ ÷(B) ⊆ ÷(A ∩B) ⊆ ÷(A).

The belief set associated with a negative ranking function κ for A is defined as K(κ) =

{A ∈ A | κ(Ā) > 0}.

Definition 2.14. Let κ be a negative ranking function for A and A ∈ A such that

κ(Ā) <∞. Then the contraction κ÷A of κ by A is defined as

κ÷A =

 κ, if κ(Ā) = 0

κA→0, if κ(Ā) > 0

 .

And the single contraction ÷κ induced by κ is defined as the function assigning to each

A ∈ A such that κ(Ā) <∞ the belief set ÷κ(A) = K(κ÷A).

Corollary 2.15. ÷κ is a single contraction for A−N c, where N = {A ∈ A | κ(A) =∞}.

Proof. ÷κ(A) = K(κ÷A) = {D ∈ A | κ÷A(D̄) > 0}. Since κ÷A(Ā) = 0, A /∈ ÷κ(A).

Assume D ∈ ÷κ(A). So κ÷A(D̄) > 0 and hence κ(D̄) > 0. So D ∈ {D ∈ A | κ(D̄) >

0} = {D ∈ A | κ÷∅(D̄) > 0} = ÷κ(∅). So ÷κ(A) ⊆ ÷κ(∅). So condition (a) holds.

Assume A /∈ ÷κ(A ∩ B). So κ÷A∩B(Ā) = 0. So either κ(Ā) = 0 or κ(Ā ∪ B̄) =

min{κ(Ā), κ(B̄)} > 0 and min{κ(Ā | A ∩ B), κ(Ā | Ā ∪ B̄)} = κ(Ā | Ā ∪ B̄) = κ(Ā) −

min{κ(Ā), κ(B̄)} = 0. So κ(Ā) ≤ κ(B̄).

Assume C ∈ ÷κ(A) ∩ ÷κ(B). So κ÷A(C̄) > 0 and κ÷B(C̄) > 0. If κ(Ā ∪ B̄) =

0, then κ÷A∩B(C̄) = κ(C̄) > 0 and thus C ∈ ÷κ(A ∩ B). So assume κ(Ā ∪ B̄) =

min{κ(Ā), κ(B̄)} > 0. So min{κ(C̄ | A), κ(C̄ | Ā)} > 0 and min{κ(C̄ | B), κ(C̄ | B̄)} > 0.

So κ÷A∩B(C̄) = min{κ(C̄ | A ∩ B), κ(C̄ | Ā ∪ B̄)} = min
{
κ(A ∩ B ∩ C̄),min{κ(Ā ∩

C̄), κ(B̄ ∩ C̄)} −min{κ(Ā), κ(B̄)}
}

. Since κ(A ∩ C̄) > 0, κ(A ∩B ∩ C̄) > 0. Thus, since

κ(Ā) ≤ κ(B̄), κ(Ā ∩ C̄) − κ(Ā) > 0, and κ(B̄ ∩ C̄) − κ(B̄) > 0, κ÷A∩B(C̄) > 0. Hence

C ∈ ÷κ(A ∩B). Thus ÷κ(A) ∩ ÷κ(B) ⊆ ÷κ(A ∩B).
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Assume D ∈ ÷κ(A ∩ B). So κ÷A∩B(D̄) > 0. If κ(Ā) = 0, then κ÷A(D̄) = κ(D̄) > 0

and hence D ∈ ÷κ(A). So assume 0 < κ(Ā) ≤ κ(B̄). Since κ÷A∩B(D̄) = min
{
κ(A∩B ∩

D̄),min{κ(Ā ∩ D̄), κ(B̄ ∩ D̄)} − κ(Ā)
}
> 0, both κ(D̄ | Ā) = κ(Ā ∩ D̄) − κ(Ā) > 0 and

κ(D̄ | A) = κ(A ∩ D̄) ≥ κ(D̄) > 0. So κ÷A(D̄) = min{κ(D̄ | A), κ(D̄ | Ā)} > 0 and hence

D ∈ ÷κ(A). Thus ÷κ(A ∩B) ⊆ ÷κ(A). So condition (b) holds.

Therefore, ÷κ is a single contraction for A−N c.

Definition 4.1. Let κ be a negative ranking function for A and A1, . . . , An ∈ A (n ≥

0) such that κ(Āi) < ∞ (i = 1, . . . , n). Then the iterated contraction κ÷〈A1,...,An〉

of κ by 〈A1, . . . , An〉 is defined as κ÷〈A1,...,An〉 = (. . . (κ÷A1) . . . )÷An . The iterated

contraction ÷κ induced by κ is defined as that function which assigns to any finite

sequence 〈A1, . . . , An〉 of propositions with κ(Āi) < ∞ (i = 1, . . . , n) the belief set

÷κ〈A1, . . . , An〉 = K(κ÷〈A1,...,An〉). Hence, ÷κ〈〉 = K(κ).

Definition 4.3. Let A be an algebra of propositions over W and N ∈ I(A) an ideal in

A. Let AN denote the set of all finite sequences of propositions from A−N c. Then ÷ is

a potential iterated contraction, a potential IC, for (A, N ) iff ÷ is a function from the set

AN of such finite sequences into the set F(A) of belief sets.

Definition 4.5. Let ÷ be a potential IC for (A, N ). Then the potential disbelief com-

parision �÷ associated with ÷ is the binary relation on A such that for all A,B ∈ A:

A �÷ B iff B ∈ N or Ā /∈ ÷〈Ā ∩ B̄〉. The associated disbelief equivalence ,÷ and the

strict disbelief comparison �÷ are defined in the usual way.

Definition 5.1. Let A be an algebra of propositions over W and N ∈ I(A) an ideal in

A. Let AN denote the set of all finite sequences of propositions from A−N c. Then ÷ is

an iterated contraction (IC) for (A, N ) iff ÷ is a potential IC for (A, N ) such that for

all A,B,C ∈ A−N c and S ∈ AN :

(IC1) the function A 7→ ÷〈A〉 is a single contraction (as specified in Definition 2.10),

(IC2) if A /∈ ÷〈〉, then ÷〈A,S〉 = ÷〈S〉,
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(IC3) if Ā ∩ B̄ = ∅, then ÷〈A,B, S〉 = ÷〈B,A, S〉,

(IC4) if A ⊆ B and A ∪ B̄ /∈ ÷〈A〉, then ÷〈A ∪ B̄, B, S〉 = ÷〈A,B, S〉,

(IC5) if both A ⊆ C̄ or A,B ⊆ C and A�÷ B, then A�÷〈C〉 B, and if the inequality in

the antecedent is strict, that of the consequent is strict, too,

(IC6) ÷〈S〉 is an IC.

÷〈S〉 in (IC6) denotes the function assigning the value ÷〈S, S′〉 to each seqence S′ in

AN . ÷〈C〉 in (IC5) is similarly defined.
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